NARULA INSTITUTE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTE)

Maulana Abul Kalam Azad University of Technology (MAKAUT) [Formerly known as WBUT]

Revised Syllabus To be implemented from the Academic Year 2016

First Year First Semester

А. Т	A. THEORY						
SI	Paper	Theory	(Contact Hours			Credit
No	Code			/Week			Points
			L	Т	Р	Total	
1	M 101	Mathematics -I	3	1	0	4	4
2	CH 101/	Chemistry (Gr. A) /	3	1	0	4	4
	PH 101	Physics - I(Gr. B)					
3	EE 101/	Basic Electrical	3	1	0	4	4
	EC 101	Engineering (Gr. A) /					
		Basic Electronics					
		Engineering (Gr. B)					
4	HU 101	Communicative English	2	0	0	2	2
5	ME 101	Engineering	3	1	0	4	4
		Mechanics					
Total of Theory					18	18	
B. F	PRACTICA	AL					
7	HU181	Extra Curricular	0	0	2	2	1
		Activity (NSS/ NCC)					
8	HU191	Lang. Lab. and	0	0	2	2	1
		Seminar Presentation					
9	CH 191/	Chemistry Lab (Gr. A) /	0	0	3	3	2
	PH191	Physics -I Lab(Gr. B)					
10	EE 191/	Basic Electrical	0	0	3	3	2
	EC 191	Engineering Lab (Gr. A)					
		/Basic Electronics					
		Engineering Lab(Gr. B)					
11	ME 191	Engg Drawing &	0	0	3	3	2
		Graphics(Gr A)/					
		Workshop Practice (Gr-					
		B)					
Total	of Practica	ıl				13	08

First Year Second Semester

A	A. THEORY						
SI	Paper	Theory	(Conta	ct Ho	ours	Credit
No	Code			//	Neek		Points
			L	Т	Р	Total	
1	M 201	Mathematics -II	3	1	0	4	4
2	CH 201/	Chemistry (Gr. B) /	3	1	0	4	4
	PH 201	Physics - I(Gr. A)					
3	EE 201/	Basic Electrical	3	1	0	4	4
	EC 201	Engineering (Gr. B) /					
		Basic Electronics					
		Engineering (Gr. A)					
4	CS 201	Computer	3	1	0	4	4
		Fundamentals &					
		Principle of Computer					
		Programming					
5	ME 201	Engineering	3	1	0	4	4
		Thermodynamics &					
		Fluid Mechanics					
Total of Theory						20	20
	3. PRACT	TICAL		1	l		
7	CS291	Computer	0	0	3	3	2
		Fundamentals &					
		Principle of Computer					
		Programming Lab					
8	CH 291/	Chemistry Lab (Gr. B) /	0	0	3	3	2
	PH291	Physics -I Lab(Gr. A)					_
9	EE 291/	Basic Electrical	0	0	3	3	2
	EC 291	Engineering Lab (Gr. B)					
		/Basic Electronics					
		Engineering Lab(Gr. A)					
10	ME 291	Engg Drawing &	0	0	3	3	2
		Graphics(Gr B)/					
		Workshop Practice (Gr-					
		A)					
	l of Practica	ા				13	08
	SSIONAL					1 .	
11	MC 281	Soft Skill Development	0	0	2	2	0

Group A (ECE, EE, AEIE, BIOMEDICAL)		Group B (CSE , IT , FT ,ME,CE)		
1 st Semester	2 nd Semester	1 st Semester	2 nd Semester	
Chemistry	Physics - I	Physics - I	Chemistry	
Basic Electrical	Basic Electronics	Basic Electronics	Basic Electrical	
Engineering	Engineering	Engineering	Engineering	
Engg Drawing & Graphics	Workshop Practice	Workshop Practice	Engg Drawing & Graphics	

First Semester Theory

Paper Name: Mathematics –I

Paper Code: M101

Contact: 4L Credit: 4

Course contents

MODULE I [10L]

Matrix Algebra: Elementary row and column operations on a matrix, Rank of matrix, Normal form, Inverse of a matrix using elementary operations, Consistency and solutions of systems of linear equations using elementary operations, Linear dependence and independence of vectors, Concept & Properties of different matrices (unitary, orthogonal, symmetric, skew-symmetric, hermitian, skew-hermitian), Eigen values and Eigen vectors of a square matrix (of order 2 or 3), Characteristic polynomials, Caley-Hamilton theorem and its applications, Reduction to diagonal form (upto 3rd order).

MODULE II [10L]

Calculus-I (Functions of single variable): Rolle's theorem, Mean value theorem- Lagrange & Cauchy, Taylor's and Maclaurin's theorems, Expansion of simple functions by Taylor's and Maclaurin's Theorems, Fundamental theorem of integral calculus, Evaluation of plane areas, volume and surface area of a solid of revolution and lengths, Convergence of Improper integrals, Beta and Gamma Integrals - Elementary properties and the Inter relations.

MODULE III [12L]

Calculus-II (**Functions of several variables**): Introduction to functions of several variables with examples, Knowledge of limit and continuity, Partial derivatives, Total Differentiation, Derivatives of composite and implicit functions, Euler's theorem on homogeneous functions, Chain rule, Maxima and minima of functions of two variables – Lagrange's method of Multipliers, Change of variables-Jacobians (up to three variables), Double and triple integrals.

MODULE IV [8L]

Vector Calculus: Scalar and vector triple products, Scalar and Vector fields, Vector Differentiation, Level surfaces, Directional derivative, Gradient of scalar field, Divergence and Curl of a vector field and their physical significance, Line, surface and volume integrals, Green's theorem in plane, Gauss Divergence theorem, Stokes' theorem, Applications related to Engineering problems.

Text / Reference Books:

- 1. E. Kreyszig, Advanced engineering mathematics (8th Edition), John Wiley, 1999.
- 2. B.S.Grewal, Higher Engineering Mathematics, Khanna Publications, 2009.
- 3. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, Narosa Pub. House, 2008.
- 4. H. Anton, Elementary linear algebra with applications (8th Edition), John Wiley, 1995.
- 5. G. Strang, Linear algebra and its applications (4th Edition), Thomson, 2006.
- 6. S. Kumaresan, Linear algebra A Geometric approach, Prentice Hall of India, 2000.
- 7. M. Apostol, Calculus, Volumes 1 and 2 (2nd Edition), Wiley Eastern, 1980.
- 8. TG. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th Edition), ISE Reprint, Addison-Wesley, 1998.
- 9. Hughes-Hallett et al., Calculus Single and Multivariable (3rd Edition), John-Wiley and Sons, 2003
- 10. J. Stewart, Calculus (5th Edition), Thomson, 2003.
- 11. J. Bird, Higher Engineering Mathematics (4th Edition, 1st India Reprint), Elsevier, 2006.
- 12. L.Rade and B.Westergen, Mathematics Handbook: for Science and Engineering (5th edition, 1st Indian Edition), Springer, 2009.
- 13. Murray R Spiegel and Seymour Lipschutz, Schaum's Outline of Vector Analysis.
- 14. Richard Bronson, Schaum's Outline of Matrix Operations.

Paper Name: Chemistry Paper Code: CH 101/CH201

Contact: 4
Credit: 4

Course contents

Module 1 [8L]

Chemical Thermodynamics –I

1.1 Concept of Thermodynamic system: Definition with example of diathermal wall, adiabatic wall, isolated system, closed system, open system, extensive property, intensive property.

Introduction to first law of thermodynamics: Different statements, mathematical form.

Internal energy: Definition, Example, Characteristics, Physical significance, Mathematical expression for change in internal Energy, Expression for change in internal energy for ideal gas.

2L

1.2 Enthalpy: Definition, Characteristics, Physical significance, Mathematical expression for change in Enthalpy, Expression for change in enthalpy for ideal gas.

Heat Capacity: Definition, Classification of Heat Capacity (Cp and CV): Definition and General expression of Cp - CV. Expression of Cp - CV for ideal gas.

Reversible and Irreversible processes: Definition, Work done in Isothermal Reversible and Isothermal Irreversible process for Ideal gas, Adiabatic changes: Work done in adiabatic process, Interrelation between thermodynamic parameters (P, V and T), slope of P-V curve in adiabatic and isothermal process.

Application of first law of thermodynamics to chemical processes: exothermic, endothermic processes, law of Lavoisier and Laplace, Hess's law of constant heat summation.

3L

1.3 2nd law of thermodynamics: Statement, Mathematical form of 2nd law of thermodynamics (Carnot cycle). Joule Thomson and throttling processes; Joule Thomson coefficient for Ideal gas, Concept of inversion temperature (brief).

Evaluation of entropy: characteristics and expression, physical significance. Work function and free energy: Definition, characteristics, physical significance, mathematical expression of ΔA and ΔG for ideal gas, standard free energy and chemical potential, Condition of spontaneity and equilibrium reaction.

Module 2 [7L]

2.1 Reaction Dynamics

Reaction laws: rate and order; molecularity; zero and first order kinetics, second order kinetics (same reactant concentration), Pseudounimolecular reaction, Arrhenius equation.

3L

Mechanism and theories of reaction rates (Content beyond the syllabus)

2.2 Solid state Chemistry

Introduction to stoichiometric defects (Schottky & Frenkel) and non – stoichiometric defects (Metal excess and metal deficiency).

Role of silicon and germanium in the field of semiconductor, n-type, p-type semiconductor, photo voltaic cell, fabrication of integrated circuits.

4L

Module 3 [8L]

Electrochemistry

3.1 Conductance

Conductance of electrolytic solutions, specific conductance, equivalent conductance, molar conductance and ion conductance, effect of temperature and concentration (Strong and Weak electrolyte).

3.2 Electrochemical cell

Cell EMF and its Thermodynamic derivation of the EMF of a Galvanic cell (Nernst equation), single electrode potentials, hydrogen half cell, calomel half cell (representation, cell reaction, expression of potential, Discussion, Application).

3L

3.3 Concept of battery

Battery and Commercial electrochemical cell: Dry cell, acid storage cell, alkaline storage cell, fuel cell (construction, representation, cell reaction, expression of potential, discussion, application).

3.4 Corrosion and its control

Introduction, cause and effect of corrosion, types of corrosion: dry, wet and other: Electrochemical corrosion, galvanic corrosion, passivation and protective measure.

2L

Module 4 [12L]

4.1 Structure and reactivity of Organic molecule

Electronegativity, electron affinity, hybridisation, Inductive effect, resonance, hyperconjugation,

electromeric effect, carbocation, carbanion and free radicals. Brief study of some addition, eliminations and substitution reactions.

3L

4.2 Polymers

Concepts, classifications and industrial applications. Polymer molecular weight (number avg. weight avg.: Theory and mathematical expression only), Poly dispersity index (PDI).

Polymerization processes: addition and condensation polymerization (mechanism not required), degree of polymerization, Copolymerization, stereo-regularity of polymer, crystallinity (concept of Tm) and amorphicity (Concept of Tg) of polymer.

Preparation, structure and use of some common polymers: plastic (HDPE, LDPE, PVC, PP, PMMA, Polyester, PTFE, Bakelite), rubber (natural rubber, SBR), fibre (nylon 6, nylon 6,6), Vulcanization of rubber, Conducting polymers and bio-polymers.

7L

4.3 Nano material

Basic principles of nano science and technology, classification, preparation, properties and application of nano material.

Module 5 [5L]

5.1 Industrial Chemistry

Fuels

Solid Fuel: Coal, Classification of coal, constituents of coal, carbonization of coal (HTC and LTC), Proximate analysis of coal, Calorific value.

Liquid fuel: Petroleum, classification of petroleum, Refining, Octane number, Cetane number, Aviation Fuel (Aviation Gasoline, Jet Gasoline), Biodiesel.

Gaseous fuels: Natural gas, water gas, Coal gas, bio gas, CNG, LPG

3L

5.2 Water

Introduction, source of water, water quality parameter, specification for drinking water (BIS and WHO standards), Chlorination of Water, Types of hardness- Units, Brief Softening methods.

2L

Short overview of water treatment plants (Content beyond the syllabus)

Reference Books

- 1. Engineering Chemistry: Bandyopadhyay and Hazra
- 2. Physical Chemistry: P.C. Rakshit
- 3. Organic Chemistry: Finar, vol-1
- 4. Engineering Chemistry: B.Sivasankar, Tata Mc Graw Hill, 2008
- 5. A Text book of Engineering Chemistry: S.S.Dara, 10th Edition, S.Chand & Company Ltd., New Delhi, 2003.
- 6. Engineering Chemistry Simplified: S. Nandi and R. Bhattacharyya, Chayya Prakashani Pvt. Ltd.

Paper Name: Physics -I Paper Code: PH 101/ PH201

Contact: 4 Credit: 4

Course contents

Module 1 (8L):-Oscillations

1.1 Simple harmonic motion: Concepts with examples, Superposition of SHMs in two mutually perpendicular directions: Lissajous' figures, **Engineering Applications** and related Numerical problems

2L

- **1.2 Damped vibration:** Differential equation and its solution, Logarithmic decrement, quality factor, **Engineering Applications** and related Numerical problems.
- **1.3 Forced vibration**: Differential equation and solution, Amplitude and Velocity resonance, Sharpness of resonance, relevant applications including LCR circuits, Numerical problems

 3L

Module 2 (9L):-

Classical Optics:

2.1 Interference of light: Wave nature of light (Huygen's principle), Conditions of sustained interference double slit as an example; qualitative idea of spatial and temporal coherence, conservation of energy and intensity distribution; Newton's ring (qualitative descriptions of working principles and procedures-no deduction required). **Engineering applications**, Numerical Problems.

Fresnel's biprism (beyond the syllabus).

1L(ext)

- **2.2 Diffraction of light:** Fresnel and Fraunhofer class, Fraunhofer diffraction for plane transmission grating (elementary treatment of intensity distribution for N-slits), single slit and double slits as examples, missing order, Rayleigh criterion, resolving power of grating and microscope (Definition and formula; no deduction required). **Engineering Applications**, Numerical Problems.
- **2.3 Polarization:** Definition, plane of polarization, plane of vibration, Malus law, fundamental concepts of plane, circular and elliptical polarizations (only qualitative idea) with examples, Brewster's law, Double refraction: ordinary and extraordinary rays, Nicol's prism, Engineering applications, Numerical problems.

Module 3 (9L):-

Quantum Physics:

- **3.1 Quantum Theory**: Inadequacy of classical physics; Planck's quantum hypothesis-Qualitative (without deductions), particle concept of electromagnetic wave (example: photoelectric and Compton effect; qualitative discussions only), wave particle duality; phase velocity and group velocity; de Broglie wave; Davisson and Germer experiment.
- 3.2 Quantum Mechanics 1: Concept of wave function, Physical significance of wave function, Probability interpretation; wave function normalization condition and its simple numerical applications; uncertainty principle-applications, Schrödinger equation (no mathematical derivation).

4L

Module 4 (6L):

X-ray & Crystallography

- **4.1** X-rays Origin of Characteristic and Continuous X-ray, Bragg's law (No derivation), Determination of lattice constant, Applications, Numerical problems.
- **4.2 Elementary ideas of crystal structure** lattice, basis, unit cell, Fundamental types of lattices Bravais lattice, Simple cubic, fcc and bcc, **hcp** lattices, (use of models in the class during teaching is desirable) Miller indices and miller planes, Co-ordination number and Atomic packing factor, Applications, Numerical problems.

 4L

Module 5 (8L):

Modern Optics-I:

- **5.1 Laser:** Concepts of various emission and absorption process, working principle of laser, metastable state, Population Inversion, condition necessary for active laser action, optical resonator, ruby laser, He-Ne laser, **semiconductor laser**, Einstein A and B coefficients and equations, industrial and medical applications of laser.
- 5.2 Fibre optics and Applications: Principle and propagation of light in optical fibres- Numerical aperture and Acceptance angle, V number, Types of optical fibres (material, refractive index, mode), Losses in optical fibre- attenuation, dispersion, bending, Numerical problems.

Recommended Text Books for Physics I (PH101//201):

Oscillations:

- 1. Classical Mechanics- J. C. Upadhyay (Himalya Publishers)
- 2. Classical Mechanics-Shrivastav
- 3. Classical Mechanics-Takwal & Puranik (TMH)
- 4. Sound-N. K. Bajaj (TMH)
- 5. Advanced Acoustics-D. P. Roy Chowdhury (Chayan Publisher)
- 6. Principles of Acoustics-B.Ghosh (Sridhar Publisher)
- 7. A text book of sound-M. Ghosh (S. Chand publishers)
- 8. Electricity Magnetism-Chattopadhyay & Rakshit (New Central Book Agency)
- 9. A text book of Light- K.G. Mazumder & B.Ghoshs, (Book & Allied Publisher)
- 10. R.P. Singh (Physics of Oscillations and Waves)
- 11. A.B. Gupta (College Physics Vol. II)
- 12. Chattopadhya and Rakshit (Vibration, Waves and Acoustics)

Classical Optics & Modern Optics-I:

- 13. A text book of Light- K.G. Mazumder & B.Ghoshs (Book & Allied Publisher)
- 14. A text book of Light-Brijlal & Subhramanium, (S. Chand publishers)
- 15. Modern Optics-A. B. Gupta (Book & Allied Publisher)
- 16. Optics-Ajay Ghatak (TMH)
- 17. Optics-Hecht
- 18. Optics-R. Kar, Books Applied Publishers
- 19. Möler (Physical Optics)
- 20. E. Hecht (Optics)
- 21. E. Hecht (Schaum Series)
- 22. F.A. Jenkins and H.E White
- 23. C.R. Dasgupta (Degree Physics Vol 3)

Quantum Physics

- 24. Introduction to Quantum Mechanics-S. N. Ghoshal (Calcutta Book House)
- 25. Quantum Mechanics-Bagde Singh (S. Chand Publishers)
- 26. Perspective of Quantum Mechanics-S. P. Kuilla (New Central Book Agency)
- 27. Quantum Mechanics-Binayak Datta Roy (S. Chand Publishers)
- 28. Quantum Mechanics-Bransden (Pearson Education Ltd.)
- 29. Perspective of Modern Physics-A. Beiser (TMH)
- 30. Eisberg & Resnick is published by Wiley India
- 31. A.K. Ghatak and S Lokenathan
- 32. E.E. Anderson (Modern Physics)
- 33 .Haliday, Resnick & Krane: Physics Volume 2 is Published by Wiley India
- 34. Binayak Dutta Roy [Elements of Quantum Mechanics]

X-ray & Crystallography

- 35. Solid state physics-Puri & Babbar (S. Chand publishers)
- 36. Materials Science & Engineering-Kakani Kakani
- 37. Solid state physics- S. O. Pillai
- 38. Introduction to solid state physics-Kittel (TMH)
- 39. Solid State Physics and Electronics-A. B. Gupta, Nurul Islam (Book & Allied Publisher)
- 40. S.O. Pillai (a. Solid state physics b. Problem in Solid state physics)

General Reference:

- 1. Refresher courses in physics (Vol. 1, Vol. 2 & Vol. 3)-C. L. Arora (S. Chand Publishers)
- 2. Basic Engineering Physics-Amal Chakraborty (Chaya Prakashani Pvt. Ltd.)
- 3. Basic Engineering Physics-I -Sujoy Bhattacharya, Saumen Paul (TMH)
- 4. Engineering Physics Vol: 1-Sudipto Roy, Tanushri Ghosh, Dibyendu Biswas (S. Chand).
- 5. Engineering Physics Vol:1-S. P. Kuila (New Central)
- 6. University Physics-Sears & Zemansky (Addison-Wesley)
- 7..B. Dutta Roy (Basic Physics)
- 8. R.K. Kar (Engineering Physics)
- 9. Mani and Meheta (Modern Physics)
- 10. Arthur Baiser (Perspective & Concept of Modern Physics)

Paper Name: Basic Electronics Engineering

Paper code: EC101/EC201

Contacts: 4L Credit: 4

Prerequisite: Electric current and voltage-D.C and A.C., Complex impedance, conductivity, resistivity, transformer, charging and discharging of capacitor, active and passive elements.

Module-I: Basics of semiconductor

6L

Conductors, Insulators, and Semiconductors- crystal structure, Fermi Dirac function, Fermi level, E-k and Energy band diagrams, valence band, conduction band, and band gap; intrinsic, and extrinsic (p-type and n-type) semiconductors, position of Fermi level in intrinsic and extrinsic semiconductor, drift and diffusion current – expression only (no derivation), mass action law, charge neutrality in semiconductor, Einstein relationship in semiconductor, Numerical problems on- Fermi level, conductivity, mass action law, drift and diffusion current.

p-n junction formation and depletion region , energy band diagram of p-n junction at equilibrium and barrier energy , built in potential at p-n junction , energy band diagram and current through p-n junction at forward and reverse bias, V-I characteristics and current expression of diode , temperature dependencies of V-I characteristics of diode , p-n junction breakdown – conditions , avalanche and Zener breakdown , Concept of Junction capacitance, Zener diode and characteristics.

Diode half wave and full wave rectifiers circuits and operation (I_{DC} , I_{rms} , V_{Dc} , V_{rms}), ripple factor without filter, efficiency ,PIV,TUF; Reduction of ac ripples using filter circuit (Qualitative analysis); Design of diode clipper and clamper circuit - explanation with example, application of Zener diode in regulator circuit. Numerical problems.

Module-III: Bipolar junction transistor(BJT)

6L

Formation of PNP/NPN Transistors ,energy band diagram, current conduction mechanism , CE ,CB,CC configurations , transistor static characteristics in CE ,CB and CC mode, junction biasing condition for active, saturation and cut-off modes ,current gain α , β and γ , early effect.

Biasing and bias stability; biasing circuits - fixed bias; voltage divider bias; collector to base bias , D.C. load line and Quiescent point, calculation of stability factors for different biasing circuits.

BJT as an amplifier and as a switch – Graphical analysis; Numerical Problems.

Module-IV: Field effect transistor (FET)

4L

Concept of field effect, channel width modulation Classification of FETs-JFET, MOSFET, operating principle of JFET. drain and transfer characteristics of JFET (n-channel and p-channel), CS,CG,CD configurations, Relation between JFET parameters. FET as an amplifier and as a switch—graphical analysis. E-MOSFET (n-channel and p-channel), D-MOSFET (n-channel and p-channel), Numerical Problems .

Module-V: Feedback and Operational Amplifier

10L

Concept of feedback with block diagram, positive and negative feedback, gain with feedback. Feedback topologies, effect of feedback on input and output impedance, distortion, concept of oscillation and Barkhausen criterion.

Operational amplifier – electrical equivalent circuit, ideal characteristics, Non ideal characteristics of opamp – offset voltages; bias current; offset current; Slew rate; CMRR and bandwidth, Configuration of inverting and non-inverting amplifier using Op-amp, closed loop voltage gain of inverting and non-inverting amplifier, Concept of virtual ground, Applications op-amp – summing amplifier; differential amplifier; voltage follower; basic differentiator and integrator.

Problems on Characteristics of Op-amp, CMRR, slew rate, amplifier and application of Op-amp to be discussed. Any other relevant problems related to topic may be discussed or assigned.

Module-VI: Cathode Ray Oscilloscope (CRO)

2L

Operating principle of CRO with block diagram, measurement of voltage, frequency and phase.

Module-VII: Digital Electronics

4L

Binary numbers and conversion, Basic Boolean algebra, Logic gates (AND,OR,NOR,NOT,NAND,XOR) and realization of functions.

Text Books:

- 1. D. Chattopadhyay, P. C. Rakshit, Electronics Fundamentals and Applications, New Age International
- 2. Millman & Halkias, Integrated Electronics, Tata McGraw Hill.
- 3. Boyelstad & Nashelsky: Electronic Devices & Circuit Theory, McGraw Hill, 1976.
- 4. Sedra & Smith, Microelectronics Engineering

Reference Books:

- 1. John D. Ryder, Electronic Fundamentals and Applications, PHI
- 2. J.B.Gupta, Basic Electronics, S.K. Kataria.
- 3. Malvino: Electronic Principle.
- 4. Schilling & Belove: Electronics Circuits.

Paper Name: Basic Electrical Engineering

Paper Code: EE101/EE201

Contacts: 4L Credit: 4

Course Content

DC CIRCUITS (7L)

Definition of electric circuit, linear circuit, non-linear circuit, bilateral circuit, unilateral circuit, Dependent source, node, branch, active and passive elements, Kirchhoff's laws, Source equivalence and conversion, Network Theorems-Superposition Theorem, Theorem, Theorem, Norton Theorem, Maximum Power Transfer Theorem, Star-Delta Conversions.

MAGNETIC CIRCUITS (3L)

Concept of Magnetic circuit, B-H curve, Analogous quantities in magnetic and electric circuits, Faraday's law, iron losses, self and mutual inductance, Energy stored in magnetic field.

AC SINGLE PHASE CIRCUITS (8L)

Sinusoidal quantities, Average and RMS values, peak factor, Form factor, Phase and Phase difference, concept of phasor diagram, V-I Relationship in R,L,C circuit, Combination R,L,C in AC series, parallel and series parallel circuits with phasor diagrams, impedance and admittance, Power factor, Power in AC circuit, Resonance in RLC series and parallel circuit, Q factor, band width of resonant circuit.

THREE PHASE CIRCUITS (3L)

Voltages of three balanced phase system, delta and star connection, relationship between line and phase quantities, phasor diagrams. Power measurement by two watt meters method.

DC MACHINES (6L)

Construction, Basic concepts of winding (Lap and wave). DC generator: Principle of operation, EMF equation, characteristics (open circuit, load) DC motors: Principle of operation, Torque Equation ,Speed Torque Characteristics (shunt and series machine), starting (by 3 point starter), speed control (armature voltage and field control).

SINGLE PHASE TRANSFORMER (5L)

Constructional parts, Types of transformers, Emf equation, No Load no load and on load operation, phasor diagram and equivalent circuit, losses of a transformer, open and short circuit tests, regulation and efficiency calculation.

THREE PHASE INDUCTION MOTOR (6L)

Types, Construction, production of rotating field, principle of operation, Slip and Frequency, rotor emf and current, Equivalent circuit and phasor diagram, Torque Slip characteristics torque-speed characteristics Starting of induction motor by star delta starter and (DOL starter). Speed Control of Three phase induction motor by variation of supply frequency, supply voltage and number of poles.

GENERAL STRUCTURE OF ELECTRICAL POWER SYSTEM (3L)

Power generation to distribution through overhead lines and underground cables with single line diagram, Earthing of Electrical Equipment, Electrical Wiring Practice

Text books

- 1. V. Mittle & Arvind Mittal, Basic Electrical Engineering, TMH.
- 2. Ashfaq Hussain, Basic Electrical Engineering, S. Chand Publication
- 3. Chakrabarti, Nath & Chanda, Basic Electrical Engineering, TMH
- 4. C.L. Wadhwa, Basic Electrical Engineering, Pearson Education

Reference books

- 1. H. Cotton, Willey Press
- 2. J.B. Gupta, Basic Electrical Engineering, Kataria & Sons.
- 3. Kothari & Nagrath, Basic Electrical Engineering, TMH

Paper Name: Communicative English

Paper Code: HU101

Contacts: 2L Credit: 2 Course Content

The proposed revised syllabus is as follows:

Unit 1: Communication: Interface in a Globalized World [5L]

- a .Definition of Communication& Scope of Communication
- b. Process of Communication—Models and Types
- c. Verbal—Non-Verbal Communication, Channels of Communication
- d. Barriers to Communication & surmounting them

[to be delivered through case studies involving intercultural communication]

Unit 2: Vocabulary and Reading [5L]

- a. Word origin—Roots, Prefixes and Suffixes, Word Families, Homonyms and Homophones
- b. Antonyms and Synonyms, One-word substitution
- c. Reading—Purposes and Skills
- d. Reading Sub-Skills—Skimming, Scanning, Intensive Reading
- e. Comprehension Practice (Fiction and Non fictional Prose/Poetry)

Texts:

- (i)Isaac Asimov, I Robot ("Robbie" OR "Little Lost Robot")
- (ii)George Orwell, "Shooting an Elephant"

- (iii)Ruskin Bond, "The Cherry Tree" OR "The Night Train at Deoli"
- (iv) Robert Frost, "Stopping by the Woods on a Snowy Evening."
- f. Precis Writing

(Use of daily newspapers for reading practice is recommended)

Unit 3: Functional Grammar and Usage [6L]

- a. Articles, Prepositions, Verbs
- b. Verb-Subject Agreement
- c. Comparison of Adjectives
- d. Tenses and their Use
- e. Transformation of Sentences (Singular-Plural, Active-Passive, Direct-Indirect, Degrees of Comparison)
- f. Error Correction

Unit 4: Business writing [10L]

- a. Business Communication in the Present-day scenario
- b. Business Letters (Letters of Inquiry, Sales Letters, Complaint and Adjustment Letters, Job Application Letters)
- c. Drafting of a CV and Résumé
- d. Memo, Notice, Advertisement, Agenda, Minutes of Meetings
- e. E-mails (format, types, jargons, conventions)

Assessment

Test Type	Test	Slot	Marks
MCQ, Short	Unit Test-1	September	15
Questions			
	Unit Test-2	November	
Assignment			10
Attendance			5
Written		December	70
Exam			

References:

- 1.Raymond Murphy. English Grammar in Use. 3rd Edn. CUP, 2001.
- 2. Seidl & McMordie. English Idioms & How to Use Them. Oxford:OUP, 1978.
- 3. Michael Swan. Practical English Usage. Oxford:OUP, 1980.
- 4. Simeon Potter. Our Language. Oxford:OUP, 1950.
- 5. Pickett, Laster and Staples. *Technical English: Writing, Reading & Speaking*. 8th ed. London: Longman, 2001.
- 6. Joseph, C. J. and Myall. *A Comprehensive Grammar of Current English*. Ed. A. Biswas. Inter University Press, 2015.

Paper Name: Engineering Mechanics Paper Code: ME101 Contacts: 4L Credit: 4

Course Content

Sl.	Syllabus	Conto	Deference Deales & Charters
No.	Synaous	Conta	Reference Books & Chapters
M		ct 2L	and Problems for practice
o d- 1	Importance of Mechanics in engineering; Introduction to Statics; Concept of Particle and Rigid Body; Types of forces: collinear, concurrent, parallel, concentrated, distributed; Vector and scalar quantities; Force is a vector; Transmissibility of a force (sliding vector).	ZL	Meriam & Kraig: Vol-I Chapt: 1/1, 2/2,1/3
	Introduction to Vector Algebra; Parallelogram law; Addition and subtraction of vectors; Lami's theorem; Free vector; Bound vector; Representation of forces in terms of i,j,k; Cross product and Dot product and their applications.	3L+1T	1. Meriam & Kraig: Vol-I Chapt: 1/3, 2/4, 2/7 2. I.H. Shames Chapt: 2.1 to 2.8 Probs: 2.1, 2.2, 2.3,2.6, 2.10, 2.48, 2.52, 2.54, 2.64, 2.68
	Two dimensional force system; Resolution of forces; Moment; Varignon's theorem; Couple; Resolution of a coplanar force by its equivalent force-couple system; Resultant of forces.	4L+1T	1. Meriam & Kraig: Vol-I Chapt: 2/3, 2/4, 2/5, 2/6, 2/9 Probs: 2/1 to 2/8; 2/13, 2/16, 2/20; 2/27, 2/31 to 2/33, 2/35, 2/37, 2/39; 2/53, 2/55, 2/57, 2/61, 2/66; 2/75, 2/77, 2/79, 2/78 to 2/82; 2/135 to 2/137, 2/139, 2/141, 2/146, 2/147,2/151, 2/157
M o d- II	Concept and Equilibrium of forces in two dimensions; Free body concept and diagram; Equations of equilibrium.	3L+1T	Meriam & Kraig: Vol-I Chapt: 3/2, 3/3 Probs: 3/1, 3/3, 3/4 to 3/7, 3/11, 3/13, 3/15, 3/21, 3/25, 3/27, 3/31,3/39

	Concept of Friction; Laws of Coulomb friction; Angle of Repose; Coefficient of friction.	3L+1T	Meriam & Kraig: Vol-I Chapt: 6/1, 6/2, 6/3 Probs: 6/1 to 6/6, 6/13, 6/15, 6/17; 2. I.H. Shames; Chapt: 7.1,7.2
M o d- III	Distributed Force: Centroid and Centre of Gravity; Centroids of a triangle, circular sector, quadralateral, composite areas consisting of above figures.	4L+1T	1. Meriam & Kraig: Vol-I Chapt: 5/1, 5/2, 5/3 Sample probs: 5/1 to 5/5 Probs: 5/2, 5/5, 5/7, 5/9, 5/12, 5/20, 5/25, 5/30, 5/43,5/47
	Moments of inertia: MI of plane figure with respect to an axis in its plane, MI of plane figure with respect to an axis perpendicular to the plane of the figure; Parallel axis theorem; Mass moment of inertia of symmetrical bodies, e.g. cylinder, sphere, cone.	3L+1T	1. Meriam & Kraig: Vol-I Chapt: Appendix A/1, A/2 Sample Probs: A/1 to A/5; Probs: A/1, A/5, A/9, A/15, A/20
	Principle of virtual work with simple application	1L+1T	
	Concept of simple stresses and strains: Normal stress, Shear stress, Bearing stress, Normal strain, Shearing strain; Hooke's law; Poisson's ratio; Stress- strain diagram of ductile and brittle materials; Elastic limit; Ultimate stress; Yielding; Modulus of elasticity; Factor of safety.	2L+1T	1.Elements of strength of Materials by Timoshenko & Young Chapt: 1.1,1.2,1.3, 2.2 Prob set 1.2: Prob: 3,4,5,8,9,10 Prob set 1.3: Prob: 1,3,5,7 2. Nag & Chanda -3rd Part Chapt: 1.1, 1.2.1 to 1.2.3, 1.2.6, 1.2.7
M o d- IV	Introduction to Dynamics: Kinematics and Kinetics; Newton's laws of motion; Law of gravitation & acceleration due to gravity; Rectilinear motion of particles; determination of position, velocity and acceleration under uniform and non-uniformly accelerated rectilinear motion; construction of x-t, v-t and a-t graphs.	3L+1T	Meriam & Kriag: Vol-II Chapt: 1/3, 1/5,1/7, 2/1,2/2 Probs: 1/1 to 1/10; 2/1 to 2/14; 2/15, 2/17, 2/19, 2/25, 2/27;

	Plane curvilinear motion of particles: Rectangular components (Projectile motion); Normal and tangential components (circular motion).	3L+1T	Meriam & Kraig: Vol-II Chapt: 2/3, 2/4, 2/5, Probs: 2/59 to 2/65, 2/67, 2/71, 2/81, 2/84, 2/89; 2/97, 2/99 to 2/103;
M o d- V.	Kinetics of particles: Newton's second law; Equation of motion; D.Alembert's principle and free body diagram; Principle of work and energy; Principle of conservation of energy; Power and efficiency.	5L+2T	Meriam & Kraig: Vol-II Chapt: 3/2, 3/3, 3/4,3/6, 3/7; Probs: 3/1, 3/3, 3/4,3/7, 3/11, 3/12; 3/17, 3/19, 3/23; 3/103 to 3/107, 3/113, 3/115, 3/116; Sample probs: 3/16, 3/17; Probs: 3/143,3/145, 3/158

Books Recommended

- Engineering Mechanics [Vol-I & II]by Meriam & Kraige, 5th ed. Wiley India
 Engineering Mechanics: Statics & Dynamics by I.H.Shames, 4th ed. PHI
 Engineering Mechanics by Timoshenko , Young and Rao, Revised 4th ed. TMH
 Elements of Strength of Materials by Timoshenko & Young, 5th ed. E.W.P
- 5. Fundamentals of Engineering Mechanics by Debabrata Nag & Abhijit Chanda– Chhaya Prakashani
- 6. Engineering Mechanics by Basudeb Bhattacharyya Oxford University Press.
 7. Engineering Mechanics: Statics & Dynamics by Hibbeler & Gupta, 11th ed. Pearson

First Semester Practical

Paper Name: Extra Curricular Activity (NSS/ NCC)

Paper Code: HU181

Contacts: 2 Credit: 1

List of Activities:

- a) Creating awareness in social issues
- b) Participating in mass education programmes
- c) Proposal for local slum area development
- d) Waste disposal
- e) Environmental awareness
- f) Production Oriented Programmes
- g) Relief & Rehabilitation work during Natural calamities

Creating awareness in social issues:

- 1. Women's development includes health, income-generation, rights awareness.
- 2. Hospital activities Eg. writing letters for patients, guiding visitors
- 3. Old age home visiting the aging in-mates, arranging for their entertainment.
- 4. Children's Homes visiting the young in-mates, arranging for their entertainment
- 5. Linking with NGOs to work on other social issues. (Eg. Children of sex-workers)
- 6. Gender issues- Developing an awareness, to link it with Women's Cell of college Participating in mass education programmes
- 1.Adult education
- 2. Children's education

Proposal for local slum area development

One or two slums to be identified and according to the needs, activities to be developed and proposals and reports are to be submitted.

Environmental awareness

- Resource conservation Awareness to be developed on water, energy, soil.
- Preservation of heritage monuments- Marches, poster campaigns
- Alternative energy consciousness amongst younger school-children.
- Plantation and beautification- Plantation of trees, their preservation and upkeep, developing NSS parks.
- Waste disposal- Proper methods of domestic waste disposal.

Production Oriented Programmes

- 5. Working with people and explaining and teaching improved agricultural practices
- 6. Rodent control land pest control practices;
- 7. Soil-testing, soil health care and soil conservation;
- 8. Assistance in repair of agriculture machinery;
- 9. Work for the promotion and strengthening of cooperative societies in villages;
- 10. Assistance and guidance in poultry farming, animal husbandry, care of animal health etc.;
- 11. Popularization of small savings and
- 12. Assistance in procuring bank loans

Relief & Rehabilitation work during Natural calamities

- g) Assisting the authorities in distribution of rations, medicine, clothes etc.;
- h) Assisting the health authorities in inoculation and immunization, supply of medicine etc.;

- i) Working with the local people in reconstruction of their huts, cleaning of wells, building roads etc.;
- j) Assisting and working with local authorities in relief and rescue operation; Collection of clothes and other materials, and sending the same to the affected areas;

Paper Name: Lang. Lab. and Seminar Presentation

Paper Code: HU191

Contacts: 2 Credit: 1

List of Experiments:

The proposed revised syllabus is as follows:

Unit 1: Introduction to the Language Lab

- a. The Need for a Language Laboratory
- b. Tasks in the Lab
- c. Writing a Laboratory Note Book

Unit 2: Active Listening

- a. What is Active Listening
- b. Listening Sub-Skills—Predicting, Clarifying, Inferencing, Evaluating, Note taking
- c. Contextualized Examples based on Lab Recordings

Unit 3: Speaking

- a. Speaking (Choice of words, Speech Syntax, Pronunciation, Intonation)
- b. Language Functions/Speech Acts
- c. Speaking using Picture Prompts and Audio Visual inputs
- c. Conversational Role Plays (including Telephonic Conversation)
- d. Group Discussion: Principles and Practice

Unit 4: Lab Project Work

- a. Keeping a Listening Log
- b. Writing a Film Review/Advertisements

Assessment

Test Type	Test	Slot	Marks
MCQ,	Listening Test-1	(as per facilitator's	10

Short		discretion)	
Questions	Speaking Test-1		10
	Reading Test-1		10
	Oral		
	Communication		10
	Test		
Lab			5
Notebook			
Attendance			5
Project			10
Lab		November(tentative)	40
Practical			
Exam			

References:

- 1. Konar, Nira. *English Language Laboratories: A Comprehensive Manual*. New Delhi: Prentice Hall India, 2011.
- 2. Lynch, Tony. Study Listening. Cambridge: Cambridge UP, 2004.
- 3. Sasikumar et al. A Course in Listening and Speaking. New Delhi: Foundation Books, 2005.

Chemistry-1 Lab Code: CH191/CH291

Contacts: 3
Credits: 2

List of Experiments:

- 1. To Determine the alkalinity in given water sample.
- 2. Redox titration (estimation of iron using permanganometry)
- 3. To determine calcium and magnesium hardness of a given water sample separately.
- 4. Preparation of phenol-formaldehyde resin (Bakelite).
- 5. Heterogeneous equilibrium (determination of partition coefficient of acetic acid between n-butanol and water).
- 7. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 8. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 9. Determination of dissolved oxygen present in a given water sample.
- 10. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution).

Innovative experiment:

Preparation of silver nano-particles.

Note: From the list of 10 (Ten) experiments a minimum of 7 (seven) experiments shall have to be performed by one student of which Sl. No. 4 (Preparation of Bakelite) has to be mandatory.

Physics-1 Lab

Paper Code: PH191/291

Contacts: 3P Credits: 2

List of Experiments:

General idea about Measurements and Errors (One Mandatory):

- i) Error estimation using Slide calipers/ Screw-gauge/travelling microscope for one experiment.
- ii) Proportional error calculation using Carrey Foster Bridge.

Any 7 to be performed from the following experiments

Experiments on Oscillations & Elasticity:

- 1. Study of Torsional oscillation of Torsional pendulum & determination of time period using various load of the oscillator.
- 2. Experiments on Lissajous figure (using CRO).
- 3. Experiments on LCR circuit.
- 4. Determination of elastic modulii of different materials (Young's modulus and Rigidity modulus)

Experiments on Optics:

- 5. Determination of wavelength of light by Newton's ring method.
- 6. Determination of wavelength of light by Laser diffraction method.
- 7. Determination of numerical aperture and the energy losses related to optical fibre experiment
- 8. Measurement of specific rotation of an optically active solution by polarimeter.

Experiments on Quantum Physics:

- 11. Determination of Planck's constant using photoelectric cell.
- 12. Verification of Bohr's atomic orbital theory through Frank-Hertz experiment.

**In addition it is recommended that each student should carry out at least one experiment beyond the syllabus/one experiment as Innovative experiment.

Probable experiments beyond the syllabus:

- 1. Determination of wavelength of light by Fresnel's bi-prism method
- 2. Study of half-wave, quarter-wave plate
- 3. Study of dispersive power of material of a prism.
- 4. Study of viscosity using Poiseullie's caplillary flow method/using Stoke's law.
- 5. Measurement of nodal and antinodal points along transmission wire and measurement of wave length.
- 6. Any other experiment related to the theory.

Paper Name: Basic Electrical Engineering Lab

Paper Code: EE 191/EE291

Contacts: 3P/Week

Credits: 2

List of Experiments:

- 1. Characteristics of Fluorescent , Tungsten and Carbon filament lamps
- 2. Verification of Thevenin's and Norton's Theorem
- 3. Verification of Superposition Theorem
- 4. Calibration of Ammeter and Wattmeter
- 5. Study of R-L-C series circuit
- 6. Open circuit and short circuit test of a single phase Transformer
- 7. Starting, Reversing of a and speed control of D.C shunt motor
- 8. Test on single phase Energy Meter
- 9. Familiarization of PMMC and MI type Meter
- 10. Familiarization with house wiring practice

Paper Name: Basic Electronics Engineering Lab

Paper Code: EC191/EC291

Contacts: 3P/Week

Credit: 2

List of Experiments:

- 1. Familiarization with passive and active electronic components such as Resistors, Inductors, Capacitors, Diodes, Transistors (BJT) and electronic equipment like DC power supplies, millimeters etc.
- 2. Familiarization with measuring and testing equipment like CRO, Signal generators etc.
- 3. Study of I-V characteristics of Junction diodes.
- 4. Study of I-V characteristics of Zener diodes.
- 5. Study of Half and Full wave rectifiers with Regulation and Ripple factors.
- 6. Study of I-V characteristics of BJTs.
- 7. Study of I-V characteristics of Field Effect Transistors.
- 8. Determination of input-offset voltage, input bias current and Slew rate of OPAMPs.
- 9. Determination of Common-mode Rejection ratio, Bandwidth and Off-set null of OPAMPs.
- 10. Study of OPAMP circuits: Inverting and Non-inverting amplifiers, Adders, Integrators and Differentiators.
- 11. Study of Logic Gates and realization of Boolean functions using Logic Gates.
- 12. Study of Characteristic curves for CB, CE and CC mode transistors.
- 13. Innovative Experiment

Paper Name: Engg. Drawing & Graphics

Paper Code: ME 191/ME291

Contacts: 3P/Week

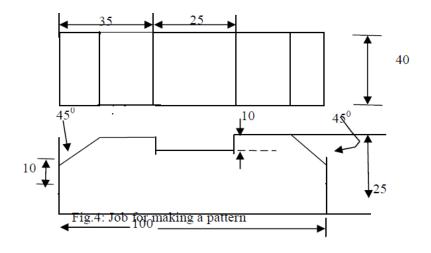
Credit: 2

List of Experiments:

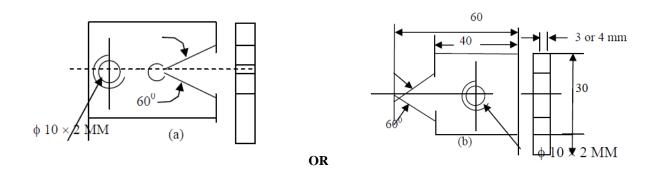
1. Lines, Lettering, Dimensioning, Scales (Plain scale & diagonal Scale).

- 2. Geometrical Construction and Curves Construction of Polygons, Parabola, Hyperbola & ellipse
- 3. Projection of Points, Lines and Surfaces orthographic projection- first angle and third angle projection, projection of lines and surfaces- Hexagon
- 4. Projection of Solids (Cube, Pyramid, Prism, cylinder and Cone
- 5. Sectional Views for simple sold objects
- 6. Introduction to Computer Aided Drafting using auto cad & / or similar software-Introduction to Cartesian and polar coordinate systems, absolute and relative coordinates; Basic editing commands: line, point, trace, rectangle, polygon, circle, arc, ellipse, polyline; editing methods; basic object selection methods window and crossing window, erase, move, copy, offset, fillet, chamfer, trim, extend, mirror; display command; zoom, pan, redraw, regenerate; simple dimensioning and text, simple exercises.

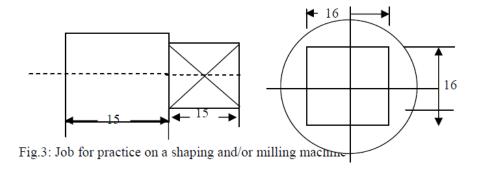
Paper Name: Workshop Practice Paper Code: ME192/ME 292

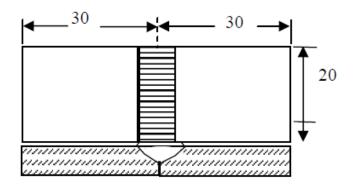

Contacts: 3P/Week

Credit: 2


List of Experiments:

Sl. No.	Syllabus	Contact Hrs
Module 1	Pattern Making	6
Module 2	Sheet Metal Work	6
Module 3	Fitting	9
Module 4	Machining in Lathe	9
Module 5	Welding	6


MODULE 1 – PATTERN MAKING.


MODULE 3- FITTING SHOP.

MODULE 4 – MACHINING IN LATHE & SHAPING M/C

MODULE 5 – WELDING

Second Semester Theory

Paper Name: Mathematics-II

Paper Code: M 201 Contact: 3L+1T Credits: 4 Course contents

Module I [10L]

Ordinary differential equations (**First order**): First order and first degree Exact equations, Necessary and sufficient condition of exactness of a first order and first degree ODE (statement only), Rules for finding Integrating factors, Linear equation, Bernoulli's equation, General solution of ODE of first order and higher degree (different forms with special reference to Clairaut's equation), Applications related to Engineering problems.

Module II [10L]

Ordinary differential equations (Higher order): General linear ODE of order two with constant coefficients, C.F. & P.I., D-operator methods for finding P.I., Method of variation of parameters, Cauchy-Eulerequations, Solution of simultaneous linear differential equations, Applications related to Engineering problems.

Module III [10L]

Basic Graph Theory:Graphs, Digraphs, Weighted graph, Connected and disconnected graphs, Complement of a graph, Regular graph, Complete graph, Subgraph, Walks, Paths, Circuits, Euler Graph, Cut-sets and cut-vertices, Matrix representation of a graph, Adjacency and incidence matrices of a graph, Graph isomorphism, Bipartite graph.Tree, Binary tree, Spanning tree of a graph, Minimal spanning tree, properties of trees, Algorithms: Dijkstra's Algorithm for shortest path problem, Determination of minimal spanning tree using Kruskal's and Prim's algorithm.

** Extra lecture hours may be taken for this module

Module IV [10L]

Combinatorics: Fundamental Principles, Permutations, Combinations, Binomial coefficients,

Probability: Classical, relative frequency and axiomatic definitions of Probability, Addition rule, Conditional probability, Multiplication rule, Independent events, Total probability, Baye's theorem. Applications from Related Engineering Problems.

[Beyond syllabus]: Random variables, Binomial, Poisson and Normal Distribution.

Text / Reference Books:

- 1. E. Kreyszig, Advanced engineering mathematics (8th Edition), John Wiley, 1999.
- 2. B.S.Grewal, Higher Engineering Mathematics, Khanna Publications, 2009.
- 3. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, Narosa Pub. House, 2008.
- 4. W. E. Boyce and R. DiPrima, Elementary Differential Equations (8th Edition), John Wiley, 2005.
- 5. R.K. Ghosh and K.C.Maity, An Introduction to Differential Equations, New Central Book Agency.
- 6. V. K. Balakrishnan, Graph Theory, Schaum's Outline, TMH.
- 7. J. Clark and D. A. Holton, A first course at Graph Theory, Allied Publishers LTD.
- 8. D. B. West, Introduction to Graph Theory, Prentice-Hall of India.
- 9. N. Deo, Graph Theory, Prentice-Hall of India.
- 10. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons.
- 11. N.G. Das, Statistical Methods, Tata McGraw Hill.
- 12. J. Bird, Higher Engineering Mathematics (4th Edition, 1st India Reprint), Elsevier, 2006.
- 13. L. Rade and B. Westergen, Mathematics Handbook: for Science and Engineering (5th edition,1st Indian Edition), Springer, 2009.

Paper Name: Computer Fundamentals & Principle of Computer Programming

Paper Code: CS 201 Contacts: 3L + 1T = 4 Total No. of Lectures: 40

Credits: 4

Fundamentals of Computer: (10 L)

History of Computer, Generation of Computer, Classification of Computers

1L

Basic structure of Computer System, Primary & Secondary Memory, Processing Unit, Input & Output devices 2L

Binary and Allied number systems representation of signed & unsigned numbers, BCD, ASCII, Binary number Arithmetic – Addition and Subtraction (using 1's complement and 2's complement)

2L

Logic gates – AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR - only truth tables, logic gate symbols and logic equations for gates only

1L

Assembly language, high level language, machine level language, compiler and assembler (basic concepts)

Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX

1L

Problem solving-Algorithm & flow chart

2L

C Fundamentals: (30 L)

Variable and Data Types:

The C character set identifiers and keywords, data type & sizes, variable names, declaration, statements

3L

C Operators & Expressions:

Arithmetic operators, relational operators, logical operators, increment and decrement operators, bitwise operators, assignment operators, conditional operators, special operators - type conversion, C expressions, precedence and associativity.

Input and Output: Standard input and output, formatted output - printf, formatted input scanf, bit fields

5L

Branching and Loop Statements:

Statement and blocks, if - else, switch, goto and labels, Loops - while, for, do while, break and continue 3L

Fundamentals and Program Structures:

auto, external, static and register variables

Functions, function types, function prototypes, functions returning values, functions not returning values, scope rules, recursion, C preprocessor and macro

6L

Arrays, Strings and Pointers:

One dimensional arrays, Two-dimensional arrays, Multidimensional arrays. Passing an array to a function

Character array and string, array of strings, Passing a string to a function, String related functions Pointers, Pointer and Array, Pointer and String, Pointer and functions, Dynamic memory allocation

6L

Files handling with C:

formatted and unformatted files, Command line arguments, fopen, fclose, fgetc, fputc, fprintf, fscanf function

4L

Structures and Unions:

Basic of structures, arrays of structures, structures and pointers, structures and functions

3L

Text book:

Kerninghan B.W. & Ritchie D.M. - The C Programming Language

Gottfried - Programming with C Schaum

Kanetkar Y. - Let us C

Balaguruswamy - Programming in C

Recommended reference Books:

Pohl and Kelly - A Book on C

Kerninghan, B.W. - The Elements of Programming Style

Schied F.S. Theory and Problems of Computers and Programming

Rajaraman V. Fundamental of Computers

M.M.Oka Computer Fundamentals, EPH

Leon Introduction to Computers, Vikas

Leon- Fundamental of Information Technology, Vikas

Ram B. Computer Fundamentals, New Age International

Ravichandran D. Programming in C, New Age International

Xavier C. Introduction to Computers, New Age International

Paper Name: Engineering Thermodynamics & Fluid Mechanics

Paper Code: ME 201 Contacts: 3L + 1T = 4

Credits: 4

Module 1: 8L+3T

Basic Concepts of ThermodynamicsIntroduction: Microscopic and Macroscopic viewpoints

Definition of Thermodynamic systems: closed, open and isolated systems Concept of Thermodynamics state; state postulate.

Definition of properties: intensive, extensive & specific properties. Thermodynamic eauilibrium

Thermodynamic processes; quasi-static, reversible & irreversible processes; Thermodynamic

cycles. Zeroth law of thermodynamics. Concept of empirical temperature.

Heat and Work

Definition & units of thermodynamic work.

Examples of different forms of thermodynamic works; example of electricity flow as work. Work done during expansion of a compressible simple system

Definition of Heat; unit of Heat

Similarities & Dissimilarities between Heat & Work

Ideal Equation of State, processes; Real Gas

Definition of Ideal Gas; Ideal Gas Equations of State.

Thermodynamic Processes for Ideal Gas; P-V plots; work done, heat transferred for isothermal, isobaric, isochoric, isentropic & polytropic processes.

Equations of State of Real Gases: Van der Waal's equation; Virial equation of state.

Properties of Pure Substances

p-v & P-T diagrams of pure substance like H2O

Introduction to steam table with respect to steam generation process; definition of saturation, wet & superheated status.

Definition of dryness fraction of steam, degree of superheat of steam.

Module 2: 4L+3T

1st Law of Thermodynamics

Definition of Stored Energy & Internal Energy 1st Law of Thermodynamics for cyclic processes Non Flow Energy Equation

Flow Energy & Definition of Enthalpy

Conditions for Steady State Steady flow: Steady State Steady Flow Energy Equation

Module 3: 6L+3T

2nd Law of Thermodynamics

Definition of Sink, Source Reservoir of Heat. Heat Engine, heat Pump & Refrigerator; Thermal efficiency of Heat Engines & co-efficient of performance of Refrigerators

Kelvin - Planck & Clausius statements of 2nd Law of Thermodynamics Absolute or Thermodynamic scale of temperature, Clausius Integral Entropy

Entropy change calculation for ideal gas processes. Carnot Cycle & Carnot efficiency PMM-2; definition & its impossibility

Module 4: 6L+3T

Air standard Cycles for IC engines

Otto cycle; plot on P-V, T-S planes; Thermal efficiency Diesel cycle; plot on P-V, T-S planes; Thermal efficiency

Rankine cycle of steam

Chart of steam (Mollier's Chart)

Simple Rankine cycle plot on P-V, T-S, h-s planes Rankine cycle efficiency with & without pump work (Problems are to solved for each module)

Module 5: 9L+3T

Properties & Classification of Fluids

Ideal & Real fluids

Newton's law of viscosity; Newtonian and Non-Newtonian fluids

Compressible and Incompressible fluids

Fluid Statics

Pressure at a point

Measurement of Fluid Pressure

Manometers: simple & differential U-tube

Inclined tube

Fluid Kinematics

Stream line

Laminar & turbulent flow

external & internal flow

Continuity equation **Dynamics of ideal fluids**

Bernoulli's equation

Total head; Velocity head; Pressure

head Application of Bernoulli's

equation

Measurement of Flow rate: Basic principles

Venturimeter, Pilot tube, Orificemeter

(Problems are to be solved for each module)

Engineering Thermodynamics

Text:

Engineering Thermodynamics - P K Nag, 4th edn, TMH. 1

References:

"Fundamentals of Thermodynamics" 6e by Sonntag & Van Wylin published by Wiley India.

Total: 33L+15T=48P

- Engineering Thermodynamics Russel & Adeliyi (Indian edition), OUP
- Engineering Thermodynamics Onkar Singhh, New Age International Publishers Ltd.
- Basic Engineering Thermodynamics R Joel, 5th Ed., Pearson

Fluid Mechanics

Text:

Fluid Mechanics and Hydraulic Machines - R K Bansal

References:

- Introduction to Fluid Mechanics and Fluid Machines S.K.Som and G.Biswas. 2nd edn, TMH
- Fluid Mechanics by A.K.Jain.

Second Semester Practical

Paper Name: Computer Fundamentals & Principle of Computer Programming Lab

Paper Code: CS291 Contacts: 3P/Week

Credit: 2

Experiment should include but not limited to the following:

- Some basic commands of DOS, Windows and Linux Operating System, File handling and Directory structures, file permissions, creating and editing simple C program, compilation and execution of C program.
- Writing C Programs on variable, expression, operator and type-casting.
- Writing C Programs using different structures of if-else statement and switch-case statement.
- Writing C Programs demonstrating use of loop (for loop, while loop and do-while loop) concept and use of break and continue statement.
- Writing C Programs demonstrating concept of Single & Multidimensional arrays.
- Writing C Programs demonstrating concept of Function and Recursion.
- Writing C Programs demonstrating concept of Pointers, address of operator, declaring pointers and operations on pointers.
- Writing C Programs demonstrating concept of structures, union and pointer to structure.
- Writing C Programs demonstrating concept of String and command line arguments.
- Writing C Programs demonstrating concept of dynamic memory allocation.
- Writing C Programs demonstrating concept of File Programming.