Department of Computer Science and Engineering

Curriculum Structure for M TECH in CSE *Programme under Autonomy*

Total Credit-75

Semester-I

Subject Code	Subject Name	Credits/Subject Th:T:P	Total Credits	Contact Hours/Week
PROGRAM	CORE			·
CSM101	Mathematical foundations of Computer	4:0:0	4	4
CSM102	Advanced Data Structures	4:0:0	4	4
ELECTIVE	Ī			
CSM103A	Machine Learning	4:0:0	4	4
CSM103B	Wireless Sensor Networks	4:0:0	4	4
CSM103C	Introduction to Intelligent Systems	4:0:0	4	4
CSM103D	Human and Computer Interaction	4:0:0	4	4
CSM103E	Image Processing	4:0:0	4	4
ELECTIVE	II			I
CSM104A	Information Theory & Coding	4:0:0	4	4
CSM104B	Data Preparation and Analysis	4:0:0	4	4
CSM104C	Cloud Computing	4:0:0	4	4
CSM104D	GPU Computing	4:0:0	4	4
CSM104E	Pattern Recognition	4:0:0	4	4
COMPULS	ORY			
CSM105	Research Methodology and IPR	4:0:0	4	4
CSM106	Operations Research	4:0:0	4	4
PRACTICA	L:			
CSEM192	Advanced Data Structures Lab	0:0:3	3	3
CSM193A	Machine Learning	0:0:3	3	3
CSM193B	Wireless Sensor Networks	0:0:3	3	3
CSM193C	Introduction to Intelligent Systems	0:0:3	3	3
CSM193D	Human and Computer Interaction	0:0:3	3	3
CSM193E	Image Processing Lab	0:0:3	3	3
	TOTAL:	24:0:6	30	30

Semester II:

Subject Code	Subject Name	Credits/Subject Th:T:P	Total Credits	Contact Hours/Week
PROGRAM	I CORE			1
CSM201	Advanced Algorithms	4:0:0	4	4
CSM202	Soft Computing	4:0:0	4	4
ELECTIVE	2 III			•
CSM203A	Distributed Systems	4:0:0	4	4
CSM203B	Data Science	4:0:0	4	4
CSM203C	Advanced Wireless and Mobile Networks	4:0:0	4	4
CSM203D	Digital Forensics	4:0:0	4	4
ELECTIVE				•
CSM204A	Security in Computing	4:0:0	4	4
CSM204B	Data Warehouse and Data Mining	4:0:0	4	4
CSM204C	Quantum Computing	4:0:0	4	4
CSM204D	Computer Vision	4:0:0	4	4
OPEN ELE	CTIVE			
CSM205A	Business Analytics	4:0:0	4	4
CSM205B	Industrial Safety	4:0:0	4	4
CSM205C	Optimization Techniques	4:0:0	4	4
CSM205D	Cost Management of Engineering	4:0:0	4	4
AUDIT CO	DURSE			
CSM206	Audit Course I	2:0:0	0	2
PRACTICA	L:	1		•
CSM291	Advanced Algorithms Lab	0:0:3	3	3
CSM292	Soft Computing Lab	0:0:3	3	3
CSM281	Mini Project with Seminar	0:0:3	3	3
	TOTAL:	26:0:9	29	31

Semester III:

Subject Code	Subject Name	Credits/Subject Th:T:P	Total Credits	Contact Hours/Week
CSM301	Audit Course II	2:0:0	0	2
PRACTICAL:				
CSM391	Project Part-I	0:0:12	6	12

TOTAL: $2:0:12$ 6 14

Semester IV:

Subject Code	Subject Name	Credits/Sub ject Th:T:P	Total Credits	Contact Hours/Week
PRACTICAL:				
CSM491	Comprehensive Viva Voce	0:0:0	4	0
CSM492	Project Part-II	0:0:12	6	12
	TOTAL:	0:0:12	10	12

Audit course 1 & 2

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by Yoga
- 8. Personality Development through Life Enlightenment Skills.

Core Subjects:

Course Code	CSM101
Course Name	Mathematical Foundation of Computer Science
Credits	4
Pre-Requisites	Discrete Mathematics

Total Number of Lectures:48

COURSE OBJECTIVE

- To understand the mathematical fundamentals that is prerequisites for avariety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning.
- To develop the understanding of the mathematical and logical basis to many modern techniques in information technology like machine learning, programming language design, and concurrency.
- To study various sampling and classification problems.

LECTURE WITH BREAKUP	NO. OF
	LECTURES
Unit 1	7
Probability mass, density, and cumulative distribution functions, Parametric	
families of distributions, Expected value, variance, conditional expectation,	
Applications of the univariate and multivariate Central Limit Theorem,	
Probabilistic inequalities, Markov chains	
Unit 2	7
Random samples, sampling distributions of estimators, Methods of Moments and	
Maximum Likelihood,	
Unit 3	8
Statistical inference, Introduction to multivariate statistical models: regression and	
classification problems, principal components analysis, The problem of overfitting	
model assessment.	
Unit 4	11
Graph Theory: Isomorphism, Planar graphs, graph colouring, hamilton circuits and	
euler cycles.	
Permutations and Combinations with and without repetition.	
Specialized techniques to solve combinatorial enumeration problems	
Unit 5	10
Computer science and engineering applications	
Data mining, Network protocols, analysis of Web traffic, Computer security,	
Software engineering, Computer architecture, operating systems, distributed	
systems, Bioinformatics, Machine learning.	
Unit 6	5
Recent Trands in various distribution functions in mathmatical field of computer	C C
science for varying fields like bioinformatic, soft computing, and computer vision.	
COURSE OUTCOMES	
After completion of course, students would be able to:	
• To understand the basic notions of discrete and continuous probability.	

- To understand the methods of statistical inference, and the role that sampling distributions play in those methods.
- To be able to perform correct and meaningful statistical analyses of simple to moderate complexity.

- 1. John Vince, Foundation Mathematics for Computer Science, Springer.
- 2. K. Trivedi.Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley.
- 3. M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Probabilistic Analysis.
- 4. Alan Tucker, Applied Combinatorics, Wiley

Course Code	CSM102
Course Name	Advanced Data Structures
Credits	4
Pre-Requisites	UG level course in Data Structures

Total Number of Lectures:48

COURSE OBJECTIVE

- The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem.
- Students should be able to understand the necessary mathematical abstraction to solve problems.
- To familiarize students with advanced paradigms and data structure used to solve algorithmic problems.
- Student should be able to come up with analysis of efficiency and proofs of correctness.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1	7
Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of	
Dictionaries.	
Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in	
Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing.	
Unit 2	5
Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and	
Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic	
Skip Lists	
Unit 3	9
Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay	
Trees	
Unit 4	12
Text Processing: Sting Operations, Brute-Force Pattern Matching, The Bover-	
Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed	
Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common	
Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.	
Unit 5	10
Computational Geometry: One Dimensional Range Searching, Two Dimensional	
Range Searching, Constructing a Priority Search Tree, Searching a Priority Search	
Tree, Priority Range Trees, Quadtrees, k-D Trees.	

Unit 6	
Recent Trands in Hashing, Trees, and various computational geometry methods for	
effeciently solving the new evolving problem	

5

COURSE OUTCOMES
After completion of course, students would be able to:
• Understand the implementation of symbol table using hashing techniques.
• Develop and analyze algorithms for red-black trees, B-trees and Splay trees.
Develop algorithms for text processing applications.

• Identify suitable data structures and develop algorithms for computational geometry problems.

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004.
- 2. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.

ELECTIVE I

Course Code	CSM103A
Course Name	Machine learning
Credits	4
Pre-Requisites	

Total Number of Lectures:48

COURSE OBJECTIVE

- To learn the concept of how to learn patterns and concepts from data without being explicitly programmed in various IOT nodes.
- To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
- Explore supervised and unsupervised learning paradigms of machine learning.
- To explore Deep learning technique and various feature extraction strategies.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	10
Supervised Learning (Regression/Classification)	
Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes	
Linear models: Linear Regression, Logistic Regression, Generalized Linear Models	
 Support Vector Machines, Nonlinearity and Kernel Methods Beyond Binary Classification: Multi-class/Structured Outputs, Ranking 	
Unit 2:	7
Unsupervised Learning	
Clustering: K-means/Kernel K-means	
 Dimensionality Reduction: PCA and kernel PCA 	
Matrix Factorization and Matrix Completion	
Generative Models (mixture models and latent factor models)	
Unit 3	6
Evaluating Machine Learning algorithms and Model Selection, Introduction to	
Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random Forests)	
Unit 4	9
Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep	
Learning and Feature Representation Learning	
Unit 5	9
Scalable Machine Learning (Online and Distributed Learning)	
A selection from some other advanced topics, e.g., Semi-supervised Learning,	
Active Learning, Reinforcement Learning, Inference in Graphical Models,	
Introduction to Bayesian Learning and Inference	
Unit 6:	5
Recent trends in various learning techniques of machine learning and classification methods for IOT applications. Various models for IOT applications.	

COURSE	OUTCOMES

After completion of course, students would be able to:

• Extract features that can be used for a particular machine learning approach in various IOT applications.

- To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.
- To mathematically analyse various machine learning approaches and paradigms.

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007.

Course Code	CSM103B
Course Name	Wireless Sensor Networks
Credits	4
Pre-Requisites	Wireless Communication

Total Number of Lectures: 48

COURSE OBJECTIVE

- Architect sensor networks for various application setups.
- Devise appropriate data dissemination protocols and model links cost.
- Understanding of the fundamental concepts of wireless sensor networks and have a basic knowledge of the various protocols at various layers.
- Evaluate the performance of sensor networks and identify bottlenecks.

LECTURE WITH BREAKUP	NO. OF
¥T */ 4	LECIURES
Unit I:	
Introduction to Wireless Sensor Networks: Course Information, Introduction	
to Wireless Sensor Networks: Motivations, Applications, Performance metrics,	
History and Design factors	9
Network Architecture: Traditional layered stack, Cross-layer designs, Sensor	
Network Architecture	
Hardware Platforms: Motes, Hardware parameters	
Unit 2:	0
Introduction to ns-3: Introduction to Network Simulator 3 (ns-3), Description	9
of the ns-3 core module and simulation example.	
Unit 3:	
Medium Access Control Protocol design: Fixed Access, Random Access,	
WSN protocols: synchronized, duty-cycled	
Introduction to Markov Chain: Discrete time Markov Chain definition,	8
properties, classification and analysis	
MAC Protocol Analysis: Asynchronous duty-cycled. X-MAC Analysis	
(Markov Chain)	
Unit 4:	
Security: Possible attacks, countermeasures, SPINS, Static and dynamic key	8
distribution	

Unit 5:	
Routing protocols: Introduction, MANET protocols	
Routing protocols for WSN: Resource-aware routing, Data-centric, Geographic	
Routing, Broadcast, Multicast	10
Opportunistic Routing Analysis: Analysis of opportunistic routing (Markov	
Chain)	
Advanced topics in wireless sensor networks.	
Unit 6:	
ADVANCED TOPICS	4
Recent development in WSN standards, software applications.	ľ

After completion of course, students would be able to:

- Describe and explain radio standards and communication protocols for wireless sensor networks.
- Explain the function of the node architecture and use of sensors for various applications.
- Be familiar with architectures, functions and performance of wireless sensor networks systems and platforms.

References:

- 1. W. Dargie and C. Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", Wiley 2010
- 2. KazemSohraby, Daniel Minoli and TaiebZnati, "wireless sensor networks -Technology, Protocols, and Applications", Wiley Interscience 2007
- 3. Takahiro Hara,Vladimir I. Zadorozhny, and Erik Buchmann, "Wireless Sensor Network Technologies for the Information Explosion Era", springer 2010

Course Code	CSM103C
Course Name	Introduction to Intelligent Systems
Credits	4
Pre-Requisites	Data Structures and Data Management or Data Structures

Total Number of Lectures: 48

COURSE OBJECTIVE

• The aim of the course is to introduce to the field of Artificial Intelligence (AI) with emphasis on its use to solve real world problems for which solutions are difficult to express using the traditional algorithmic approach. It explores the essential theory behind methodologies for developing systems that demonstrate intelligent behaviour including dealing with uncertainty,

learning from experience and following problem solving strategies found in na	ture.
LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1: Biological foundations to intelligent systems I: Artificial neural networks, Back- propagation networks, Radial basis function networks, and recurrent networks.	9
Unit 2: Biological foundations to intelligent systems II: Fuzzy logic, knowledge Representation and inference mechanism, genetic algorithm, and fuzzy neural networks.	6
Unit 3: Search Methods Basic concepts of graph and tree search. Three simple search methods: breadth-first search, depth-first search, iterative deepening search. Heuristic search methods: best-first search, admissible evaluation functions, hill-climbing search. Optimisation and search such as stochastic annealing and genetic algorithm.	7
Unit 4: Knowledge representation and logical inference Issues in knowledge representation. Structured representation, such as frames, and scripts, semantic networks and conceptual graphs. Formal logic and logical inference. Knowledge-based systems structures, its basic components. Ideas of Blackboard architectures.	9
Unit 5: Reasoning under uncertainty and Learning Techniques on uncertainty reasoning such as Bayesian reasoning, Certainty factors and Dempster-Shafer Theory of Evidential reasoning, A study of different learning and evolutionary algorithms, such as statistical learning and induction learning.	7
Unit 6: Recent trends in Fuzzy logic, Knowledge Representation	5

After completion of course, students would be:

• Able to Demonstrate knowledge of the fundamental principles of intelligent systems and would be able to analyse and compare the relative merits of a variety of AI problem solving techniques.

References:

- 1. Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.
- 2. Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rd edition.

Course Code	CSM103D
Course Name	Human and Computer Interection
Credits	4
Pre-Requisites	

Total Number of Lectures: 48

COURSE OBJECTIVE

- Learn the foundations of Human Computer Interaction
- Be familiar with the design technologies for individuals and persons with disabilities
- Be aware of mobile Human Computer interaction.
- Learn the guidelines for user interface.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	
Human: I/O channels – Memory – Reasoning and problem solving; The	0
computer: Devices – Memory – processing and networks; Interaction: Models	9
- frameworks - Ergonomics - styles - elements - interactivity- Paradigms.	
Unit 2:	
Interactive Design basics – process – scenarios – navigation – screen design –	
Iteration and prototyping. HCI in software process - software life cycle -	10
usability engineering – Prototyping in practice – design rationale. Design rules	12
- principles, standards, guidelines, rules. Evaluation Techniques - Universal	
Design.	
Unit 3:	
Cognitive models –Socio-Organizational issues and stake holder requirements	8
-Communication and collaboration models-Hypertext, Multimedia and WWW.	
Unit 4:	
Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile	8
Applications: Widgets, Applications, Games- Mobile Information Architecture,	0
Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	
Unit 5:	
Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools,	8
Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	
Unit 6:	3
Recent Trends: Speech Recognition and Translation, Multimodal System	5

After completion of course, students would be:

- Understand the structure of models and theries of human computer interaction and vision.\
- Design an interactive web interface on the basis of models studied.

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II & III)
- 2. Brian Fling, "Mobile Design and Development", First Edition , O®Reilly Media Inc., 2009 (UNIT IV)
- 3. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O®Reilly, 2009.(UNIT-V)

Course Code	CSM 103E
Course Name	Image Processing
Credits	4

Pre-Requisites

LECTURE WITH BREAKUP	NO. OF LECTURES
UNIT 1: DIGITAL IMAGE FUNDAMENTALS	8
Introduction – Digital Image Representation – Fundamental steps in	
Digital Image Processing – Components;	
Elements of Visual Perception – Light and Electromagnetic Spectrum –	
Image Acquisition – Image Sampling and Quantization – Relationships	
between pixels.	
UNIT 2: IMAGE ENHANCEMENT	10
Spatial Domain: Gray level transformations – Histogram processing –	
Basics of Spatial Filtering–Smoothing and Sharpening Spatial Filtering	
Frequency Domain: Introduction to Fourier Transform – Properties of	
The Two Dimensional Fourier Transform, Discrete Fourier Transform,	
Discrete Cosine & Sine Transform. Enhancement in the frequency	
domain - Low pass filtering, High pass filtering.	
UNIT 3: IMAGE RESTORATION	8
Degradation Model, Discrete Formulation, Algebraic Approach to	
Restoration - Unconstrained & Constrained;	
Constrained Least Square Filtering – Geometric Transformation – Spatial	
Transformation, Gray Level Interpolation.	
UNIT 4: IMAGE SEGMENTATION AND REPRESENTATION	8
Point Detection, Line Detection, Edge detection, Combined detection,	
Edge Linking & Boundary Detection – Local Processing, Global	
Processing via The Hough Transform;	
Thresholding - Foundation, Simple Global Thresholding, Optimal	
Thresholding	
Segmentation – Detection of Discontinuities – Edge Linking and	
Boundary detection – Region based segmentation;	
UNIT 5: IMAGE MORPHOLOGY	6
Preliminaries, dilation, erosion, open and closing, hit or miss	
transformation, basic morphologic algorithms.	

BOOKS:

1. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Pearson Education, Third Edition, 2010.

 W.K.Pratt, Digital Image Processing ,3/e Edn., John Wiley & sons, Inc. 2006.
 Bhabatosh Chanda, Dwejesh Dutta Majumder, "Digital Image Processing and analysis", PHI Learning Pvt. Ltd., Second Edition, 2011.

REFERENCES:

1. Fundamentals of Digital Image Processing, Jain, PHI

2. Image Processing, Analysis & Machine Vision, Sonka, VIKAS

ELECTIVE II

Course Code	CSM104A
Course Name	Information Theory and Coding
Credits	4
Pre-Requisites	Probability Theory, Computer Networks

Total Number of Lectures: 48

COURSE OBJECTIVE

• The objective of this course is to provide an insight to information coding techniques, error correction mechanism. Various compression techniques for text, video and image are covered for thorough knowledge of efficient information conveying systems.

LECTURE WITH BREAKUP	NO. OF	
	LECTURES	
Unit 1:		
Information and entropy information measures, Shannon's concept of	0	
Information. Channel coding, channel mutual information capacity (BW),	0	
Unit 2:		
Theorem for discrete memory less channel, information capacity theorem, Error	9	
detecting and error correcting codes,		
Unit 3:		
Types of codes: block codes, Hamming and Lee metrics, description of linear	8	
block codes, parity check Codes, cyclic code, Masking techniques,		
Unit 4:		
Compression: loss less and lossy, Huffman codes, LZW algorithm, Binary		
Image compression schemes, run length encoding, CCITT group 3 1-	10	
DCompression, CCITT group 3 2D compression, CCITT group 4		
2DCompression.		
Unit 5:		
Convolutional codes, sequential decoding. Video image Compression: CITT H	0	
261 Video coding algorithm, audio (speech) Compression. Cryptography and	9	
cipher.		
Unit 6:		
Case study of CCITT group 3 1-DCompression, CCITT group 3 2D	4	
compression.		

COURSE OUTCOMES	
After completion of course, students would be:	
• The aim of this course is to introduce the principles and applications of information theory.	
• The course will study how information is measured in terms of probability and entropy.	

• The students learn coding schemes, including error correcting codes, The Fourier perspective; and extensions to wavelets, complexity, compression, and efficient coding of audio-visual information.

- 1. Fundamentals in information theory and coding, Monica Borda, Springer.
- 2. Communication Systems: Analog and digital, Singh and Sapre, TataMcGraw Hill.
- 3. Multimedia Communications Fred Halsall.
- 4. Information Theory, Coding and Cryptography R Bose.
- 5. Multimedia system Design Prabhat K Andleigh and Kiran Thakrar.

Course Code	CSM104B
Course Name	Data Preparation and Analysis
Credits	4
Pre-Requisites	

Total Number of Lectures: 48

COURSE OBJECTIVE	
• To prepare the data for analysis and develop meaningful Data Visualizations	
LECTURE WITH BREAKUP	NO. OF LECTURES
Unit1:	0
Data Gathering and Preparation: Data formats, parsing and transformation, Scalability and real-time issues	9
Unit2: Data Cleaning: Consistency checking, Heterogeneous and missing data, Data Transformation and segmentation	11
Unit3: Exploratory Analysis: Descriptive and comparative statistics, Clustering and association, Hypothesis generation	13
Unit4: Visualization: Designing visualizations, Time series, Geolocated data, Correlations and connections, Hierarchies and networks, interactivity	15

C	OURSE OUTCOMES
Af	ter completion of course, students would be:
٠	Able to extract the data for performing the Analysis.

References:

1. Making sense of Data : A practical Guide to Exploratory Data Analysis and Data Mining, by Glenn

J. Myatt

Course Code	CSM104C
Course Name	Cloud Computing
Credits	4
Pre-Requisites	

COURSE OBJECTIVE		
•	The student will also learn how to apply trust-based security model to real-world security problems.	
•	An overview of the concepts, processes, and best practices needed to successfully secure information within Cloud infrastructures.	
•	Students will learn the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and Challenges for each Cloud type and service delivery model.	

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	
Introduction to Cloud Computing	
Online Social Networks and Applications, Cloud introduction and overview,	4
Different clouds, Risks, Novel applications of cloud computing	
Unit 2:	
Cloud Computing Architecture	
Requirements, Introduction Cloud computing architecture, On Demand Computing	
Virtualization at the infrastructure level, Security in Cloud computing	
environments, CPU Virtualization, A discussion on Hypervisors Storage	11
Virtualization Cloud Computing Defined, The SPI Framework for Cloud Computing,	11
The Traditional Software Model, The Cloud Services Delivery Model	
Cloud Deployment Models	
Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on Users,	
Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise	
Unit 3:	
Security Issues in Cloud Computing	
Infrastructure Security, Infrastructure Security: The Network Level, The Host	
Level, The Application Level, Data Security and Storage, Aspects of Data Security,	10
Data Security Mitigation Provider Data and its Security	
Truct Roundaries and IAM IAM Challenges, Relevant IAM Standards and Protocols	
for Cloud Services IAM Practices in the Cloud Cloud Authorization Management	
Init A.	
Security Management in the Cloud	
Security Management Standards, Security Management in the Cloud Availability	
Management: SaaS. PaaS. JaaS	
Privacy Issues	11
Privacy Issues Data Life Cycle Key Privacy Concerns in the Cloud Protecting	11

Privacy Issues, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations

Unit 5:	
Audit and Compliance	
Internal Policy Compliance, Governance, Risk, and Compliance (GRC),	8
Regulatory/External Compliance, Cloud Security Alliance, Auditing the Cloud for	
Compliance, Security-as-a-Cloud	

Recent devlopments in hybrid cloud and cloud security.

4	

CC	COURSE OUTCOMES	
After completion of course, students would be able to:		
٠	Identify security aspects of each cloud model	
٠	Develop a risk-management strategy for moving to the Cloud	
•	Implement a public cloud instance using a public cloud service provider	
٠	Apply trust-based security model to different layer	

References:

- 1. Cloud Computing Explained: Implementation Handbook for Enterprises, John Rhoton, Publication Date: November 2, 2009
- 2. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice), Tim Mather, ISBN-10: 0596802765,0'Reilly Media, September 2009

Course Code	CSM104D
Course Name	GPU Computing
Credits	4
Pre-Requisites	

Total Number of Lectures: 48

RSE OBJECTIVE		
• To learn parallel programming with Graphics Processing Units (GPUs).		
LECTURE WITH BREAKUP	NO. OF LECTURES	
Unit 1:		
Introduction: History, Graphics Processors, Graphics Processing Units,		
GPGPUs. Clock speeds, CPU / GPU comparisons, Heterogeneity, Accelerators,		
Parallel programming, CUDA OpenCL / OpenACC,	13	
Hello World Computation Kernels, Launch parameters, Thread hierarchy, Warps		
/ Wavefronts, Thread blocks / Workgroups, Streaming multiprocessors, 1D / 2D		
/ 3D thread mapping, Device properties, Simple Programs		
Unit 2:		
Memory: Memory hierarchy, DRAM / global, local / shared, private / local,		
textures, Constant Memory, Pointers, Parameter Passing, Arrays and dynamic	7	
Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying	/	
across devices, Programs with matrices, Performance evaluation with different		
Memories		

Unit 3: Synchronization: Memory Consistency, Barriers (local versus global), Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such as Worklists, Linked-lists. Synchronization across CPU and GPU Functions: Device functions, Host functions, Kernels functions, Using libraries (such as Thrust), and developing libraries.	10
Unit 4: Support: Debugging GPU Programs. Profiling, Profile tools, Performance aspects Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data transfers, Default Stream, Synchronization with streams. Events, Event-based- Synchronization - Overlapping data transfer and kernel execution, pitfalls.	8
Unit 5: Case Studies: Image Processing, Graph algorithms, Simulations, Deep Learning	5
Unit 6: Advanced topics: Dynamic parallelism, Unified Virtual Memory, Multi-GPU processing, Peer access, Heterogeneous processing	5

After completion of course, students would be:

• Students would learn concepts in parallel programming, implementation of programs on GPUs, debugging and profiling parallel programs.

- 1. Programming Massively Parallel Processors: A Hands-on Approach; David Kirk, Wen-mei Hwu; Morgan Kaufman; 2010 (ISBN: 978-0123814722)
- 2. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman; 2012 (ISBN: 978-0124159334)

Course Code	CSM104E
Course Name	Pattern Recognition
Credit	4
Pre-requisite	Linear algebra and Statistics

LECTURE WITH BREAKUP	NO. OF
	LECTURES
UNIT -1	6
Introduction to pattern recognition	
Basic concepts- Definitions, data sets for Pattern Recognition, Structure of a typical pattern	
recognition system. Different Paradigms of Pattern Recognition. Representations of Patterns and	
Classes. Metric and non-metric proximity measures	
UNIT -2	5
Probabilistic models	
Methods for parameter estimation-Maximum-Likelihood (ML) estimation-Maximum a posteriori	
(MAP) estimation-Bayesian estimation-Gaussian mixture model (Both unimodal-and multimodal	
distribution)-Expectation-maximization method.	
UNIT -3	4

Features selection Feature vectors - Feature spaces - Different approaches to Feature Selection-Filter, Wrapper and Embedded. Sequential Feature Selection.	
UNIT -4	3
Features extraction	
Principal Component Analysis (PCA) Kernel PCA CCA	
	10
UNIT -5 Dettern elegation using Statistical elegations – Daves' and Neïve Daves elegation – Classification	12
Patterni classification using Statistical classifiers - Bayes and Naive Bayes classifier - Classification	
performance measures – Risk and error probabilities. Linear Discriminant Function, Manatanoois	
Distance, K-NN Classifier, Fisher's LDA, Single Layer Perceptron, Multi-layer Perceptron, Training	
set, test set; standardization and normalization	
UNIT -6	8
Basics of Clustering; similarity and dissimilarity measures ; clustering criteria. Different distance	
functions and similarity measures. K-means algorithm, K-medoids, DBSCAN.	

Text books

- 1. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, John Wiley, 2001
- 2. Pattern Recognition and Machine Learning, C.M.Bishop, Springer, 2006

Reference books

- 1. Peter Flach, Machine Learning. Cambridge University Press, 2012.
- 2. Pattern Recognition, S.Theodoridis and K.Koutroumbas, 4th Ed., Academic Press, 2009
- 3. Statistical pattern Recognition; K. Fukunaga; Academic Press, 2000.

Course Code	CSM105
Course Name	Research Methodology and IPR
Credits	4
Pre-Requisites	Numerical Analysis
Teaching Scheme	
Lectures: 1hrs/week	

Course Outcomes:

At the end of this course, students will be able to

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about

Intellectual Property Right to be promoted among students in general & engineering in particular.

• Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Syllabus Contents:

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches, analysis

Plagiarism, Research ethics,

Unit 3: Effective technical writing, how to write report, Paper

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5: Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit 6: New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- Ranjit Kumar, 2 ndEdition, "Research Methodology: A Step by Step Guide for beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Course Code	CSM106				
Course Name	Operations Research				
Credits	4				
Pre-Requisites	Linear Algebra and Numerical Methods				
		-	-	-	_

Total Number of Lectures: 48

COURSE OBJECTIVE

The objective of this course is to provide insight to the mathematical formulation of real world problems.

To optimize these mathematical problems using nature based algorithms. And the solution is useful specially for NP-Hard problems.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models	7
Unit 2: Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming	7
Unit 3: Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT	11
Unit 4: Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.	12
Unit 5: Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic	6

Unit 6: Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

COURSE OUTCOMES

After completion of course, students would be:

- 1. Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.
- 2. Students should able to apply the concept of non-linear programming
- 3. Students should able to carry out sensitivity analysis
- 4. Student should able to model the real world problem and simulate it

- 1. Laurence A. Wolsey (1998). Integer programming. Wiley. ISBN 978-0-471-28366-9.
- 2. Practical Optimization Algorithms and EngineeringApplications Andreas Antoniou.
- 3. An Introduction to Optimization Edwin K., P. Chong & Stanislaw h. Zak.
- 4. Dimitris Bertsimas; Robert Weismantel (2005). Optimization over integers. Dynamic Ideas. ISBN 978-0-9759146-2-5.
- 5. John K. Karlof (2006). Integer programming: theory and practice.CRC Press. ISBN 978-0-8493-1914-3.
- 6. H. Paul Williams (2009). Logic and Integer Programming. Springer. ISBN 978-0-387-92279-9.
- 7. Michael Jünger; Thomas M. Liebling; Denis Naddef; George Nemhauser; William R. Pulleyblank; Gerhard Reinelt; Giovanni Rinaldi; Laurence A. Wolsey, eds. (2009). 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the- Art. Springer. ISBN 978-3-540-68274-5.
- 8. Der-San Chen; Robert G. Batson; Yu Dang (2010). Applied Integer Programming: Modeling and Solution. John Wiley and Sons. ISBN 978-0-470-37306-4.

Course Code	CSM192
Course Name	Advanced Data Structures Lab
Credits	3
Pre-Requisites	

COURSE OBJECTIVE
• The student should be able to choose appropriate data structures, understand the
ADT/libraries, and use it to design algorithms for a specific problem.
• Students should be able to understand the necessary mathematical abstraction to solve

- Students should be able to understand the necessary mathematical abstraction to solve problems.
 To familiarize students with advanced paradigms and data structure used to solve algorithmic
- problems.
 - Student should be able to come up with analysis of efficiency and proofs of correctness.

	LABORATORY
 Assignments on the application of array data structure to sort a set of elements using different sorting methods (e.g., bubble sort, insertion sort, selection sort) Assignments on the application of array data structure to search an element in a set of elements using different searching methods (e.g., linear search, binary search) Implementation of stack and queue using array and linked list data structures Assignments on the implementation of binary tree using array and linked list and traversal of the tree Implementation of hashing where collision resolution is done using open addressing method Implementation of KMP algorithm for pattern matching Application of one/ two data structures in real life applications 	12

COURSE OUTCOMES

After completion of course, students would be able to:
 Understand the implementation of symbol table using hashing techniques.
• Develop and analyze algorithms for red-black trees, B-trees and Splay trees.
Develop algorithms for text processing applications.
Identify suitable data structures and develop algorithms for computational geometry problems.

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004.
- 2. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.

Course Code	CSM193A
Course Name	Machine learning Lab
Credits	3
Pre-Requisites	

COURSE OBJECTIVE

- To learn the concept of how to learn patterns and concepts from data without being explicitly programmed in various IOT nodes.
- To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
- Explore supervised and unsupervised learning paradigms of machine learning.
- To explore Deep learning technique and various feature extraction strategies.

LABORATORY	NO. OF LABORATORY
• Softwares: Matlab/R/Python, Weka	12
• Implementation of Clustering, Classification and Regression Algorithms	
Linear and Non Linear Classification using Neural Network	
• SVM toolboxes: SVMlight, SVMtorch etc	
• Deep Learning platforms: Tensorflow/Caffe/Theano, implementation of popular architectures related to CNN, RNN, LSTM, Auto-encoder etc	
 Implementation of Time Series clustering and alignment algorithms 	

COURSE OUTCOMES

After completion of course, students would be able to:

- Extract features that can be used for a particular machine learning approach in various IOT applications.
- To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.
- To mathematically analyse various machine learning approaches and paradigms.

References:

1. R.P. Deng, R Programming for Data Science, (https://leanpub.com/rprogramming)

2. J. Verzani, Using R for Introductory Statistics, Chapman & Hall/CRC .

3. H. Wickham, Advanced R, Chapman & Hall/CRC.

4. P.K. Janert, Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists, O' Reilly Dan Van Boxel, Hands-On Deep Learning with TensorFlow

5. Geron A., Hands-on Machine Learning with Scikit-learn and Tensorflow, O'Reilly

Course Code	CSM193B
Course Name	Wireless Sensor Networks Lab
Credits	3
Pre-Requisites	

COURSE OBJECTIVE

- Architect sensor networks for various application setups.
- Devise appropriate data dissemination protocols and model links cost.
- Understanding of the fundamental concepts of wireless sensor networks and have a basic knowledge of the various protocols at various layers.
- Evaluate the performance of sensor networks and identify bottlenecks.

LABORATORY	NO. OF
	LABORATORY
Network Simulator (NS)	12
Installation of Network Simulator ns 2	
Familiarization with ns 2	
Learn programming in OTCL	
 Setup wired and wireless networks using existing protocols in OTCL 	
• Observe the variation in the network performance of wireless ad	
hoc networks for various routing protocols	
Observe the variation in the network performance of vehicular	
ad hoc networks for various routing protocols	
Real time network simulator Qualnet	
• Building a prototype sensor network: The instructor will make available some sensor hardware and wireless interfaces. Students will	
be permitted to work individually or form groups of 2-5 members,	
and propose an application. The group is expected to develop the	
protocols and software and demonstrates a working prototype	
network that suits the picked application. Students are required to	
Justify an design decisions made and complet that and an learned	
Investigating on onen research problem in the context of wineless	
• Investigating an open research problem in the context of wheteess sensor networks: For this arrangement a students can work alone or	
with at most one additional classmate. The students are expected to	
survey the literature propose a solution and validate the	
performance. Students are to prepare a well-written paper that	
describes the problem, details and justifies the solution and discusses	
the volition results.	

COURSE OUTCOMES

After completion of course, students would be able to:

- Describe and explain radio standards and communication protocols for wireless sensor networks.
- Explain the function of the node architecture and use of sensors for various applications.
- Be familiar with architectures, functions and performance of wireless sensor networks systems and platforms.

1. W. Dargie and C. Poellabauer, "Fundamentals of Wireless Sensor Networks – Theory and Practice", Wiley 2010

2. KazemSohraby, Daniel Minoli and TaiebZnati, "wireless sensor networks -Technology, Protocols, and Applications", Wiley Interscience 2007

3. Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann, "Wireless Sensor Network Technologies for the Information Explosion Era", springer 2010

Course Code	CSM193C
Course Name	Introduction to Intelligent Systems Lab
Credits	3
Pre-Requisites	

Total Number of Lab:12

COURSE OBJECTIVE

• The aim of the course is to introduce to the field of Artificial Intelligence (AI) with emphasis on its use to solve real world problems for which solutions are difficult to express using the traditional algorithmic approach. It explores the essential theory behind methodologies for developing systems that demonstrate intelligent behaviour including dealing with uncertainty, learning from experience and following problem solving strategies found in nature.

LABORATORY	NO. OF LABORATORY
In this laboratory students will be familiarized with PROLOG/ LISP	12
language.	
• Introduction to PROLOG facts & rules with the help of a simple	
family tree: how the goals are given in PROLOG; some simple	
queries on the family tree formation of recursive definition; how	
PROLOG executes the goals; simple assignments	
 how PROLOG deals with problems with numbers – integers, real; with some examples 	
Introduction to LIST structure: how PROLOG implements LIST; some simple	
assignments on LIST	
 some more complex assignments on LIST. Introduction to Accumulator – simple assignments 	
• Introduction to CUT with simple assignments; implementation of sorting algorithms	
• implementation of graph search algorithms like DFS, BFS; Some application of BFS. DFS	
• Implementation of some well known puzzles, like 8-queens	
problem, Towers-of-Hanoi problem, Missionaries & Cannibals	
problem etc.	
Introduction to LISP	
• Some simple assignments on LISP	

After completion of course, students would be:

• Able to Demonstrate knowledge of the fundamental principles of intelligent systems and would be able to analyse and compare the relative merits of a variety of AI problem solving techniques.

References:

- 1. Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.
- 2. Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rd edition.

Course Code	CSM193D
Course Name	Data Warehouse and Data Mining Lab
Credits	3
Pre-Requisites	

Total Number of Lab:12

COURSE OBJECTIVE

• The objective of this course is to introduce data warehousing and mining techniques. Application of data mining in web mining, pattern matching and cluster analysis is included to aware students of broad data mining areas.

LABORATORY	NO. OF
	LABORATORI
Apriori Algorithm.	12
FP-Growth Algorithm.	
K-means clustering.	
Linear and non linear Classification using neural network.	
One Hierarchical clustering algorithm.	
Bayesian Classification.	
Decision Tree.	
Support Vector Machines.	
Applications of classification for web mining.	
Case Study on Text Mining or any commercial application.	

COURSE OUTCOMES	
After completion of course, students would be:	
 Study of different sequential pattern algorithms 	
• Study the technique to extract patterns from time series data and it application in realworld.	
Can extend the Graph mining algorithms to Web mining	
Help in identifying the computing framework for Big Data	
Deferences	

- 1. Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
- 2. Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 3. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Course Code	CSM193E
Course Name	Image Processing
Credit	3
Pre-requisite	Basic knowledge of mathematics and programming

LABORATORY	NO. OF
	Experiments
UNIT -1	2
Introduction to MATLAB and Image	
Introduction to MATLAB tools for image processing.	
Image zooming and shrinking.	
UNIT -2	6
Image Enhancement	
Power-law transformation, contrast stretching, image negative.	
Histogram equalization.	
Smoothing - Image Averaging, Median Filter.	
Sharpening. SOBEL, Prewitt and Laplacian.	
Frequency domain transformation by DFT and DCT.	
Low and high pass filtering by Discrete Fourier transform.	
	2
	Z
Image Segmentation	
Image thresholding by global and optimal.	
Edge and Line detection by Hough transformation.	
UNIT -4	2
Morphology	
Image erosion and dilation.	
Image opening and closing.	

Text books.

Digital Image Processing, Gonzalves, Pearson
 Digital Image Processing, Jahne, Springer India

Reference books.

1.Digital Image Processing & Analysis,Chanda & Majumder,PHI 2.Fundamentals of Digital Image Processing, Jain, PHI 3.Image Processing, Analysis & Machine Vision, Sonka, VIKAS

Semester II

Program Core

Course Code	CSM201
Course Name	Advanced Algorithms
Credits	4
Pre-Requisites	UG level course in Algorithm Design and Analysis
	Total Number of Lectures:48

COURSE OBJECTIVE

- Introduce students to the advanced methods of designing and analyzing algorithms.
- The student should be able to choose appropriate algorithms and use it for a specific problem.
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems.
- Students should be able to understand different classes of problems concerning their computation difficulties.
- To introduce the students to recent developments in the area of algorithmic design.

LECTURE WITH BREAKUP	NO. OF
	LECTURES
Unit1	6
Sorting: Review of various sorting algorithms, topological sorting	
Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest	
path in edge-weighted case (Dijkasra's), depth-first search and computation of	
strongly connected components, emphasis on correctness proof of the algorithm	
and time/space analysis, example of amortized analysis.	
Unit 2	8
Matroids: Introduction to greedy paradigm, algorithm to compute a maximum	
weight maximal independent set. Application to MST.	
Graph Matching: Algorithm to compute maximum matching. Characterization	
of maximum matching by augmenting paths, Edmond's Blossom algorithm to	
compute augmenting path.	
Unit 3	9
Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute	
maximum flow, Edmond-Karp maximum-flow algorithm.	
Matrix Computations: Strassen's algorithm and introduction to divide and	
conquer paradigm, inverse of a triangular matrix, relation between the time	
complexities of basic matrix operations, LUP-decomposition.	
Unit 4	10
Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to	
dynamic programming paradigm. More examples of dynamic programming.	
Modulo Representation of integers/polynomials: Chinese Remainder	
Theorem, Conversion between base-representation and modulo-representation.	
Extension to polynomials. Application: Interpolation problem.	
Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast	
Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm	

Unit 5	10
Linear Programming: Geometry of the feasibility region and Simplex	
algorithm	
NP-completeness: Examples, proof of NP-hardness and NP-completeness.	
One or more of the following topics based on time and interest	
Approximation algorithms, Randomized Algorithms, Interior Point Method,	
Advanced Number Theoretic Algorithm	
Unit 6	5
Recent Trands in problem solving paradigms using recent searching and sorting	
techniques by applying recently proposed data structures.	
COURSE OUTCOMES	
After completion of course, students would be able to:	
• Analyze the complexity/performance of different algorithms.	
• Determine the appropriate data structure for solving a particular set of probl	ems.
• Categorize the different problems in various classes according to their complexity.	
• Students should have an insight of recent activities in the field of the advanced data	
structure.	
References:	

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
 - 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
 - 3. "Algorithm Design" by Kleinberg and Tardos.

Course Code	CSM202	
Course Name	Soft Computing	
Credits	4	
Pre-Requisites	Basic knowledge of mathematics	
		Total Number of Lectures:48

COURSE OBJECTIVE

- To introduce soft computing concepts and techniques and foster their abilities in designing appropriate technique for a given scenario.
- To implement soft computing based solutions for real-world problems.
- To give students knowledge of non-traditional technologies and fundamentals of artificial neural networks, fuzzy sets, fuzzy logic, genetic algorithms.
- To provide studentan hand-on experience on MATLAB to implement various strategies.

LECTURE WITH BREAKUP	NO. OF
	LECTURES
Unit 1	7
INTRODUCTION TO SOFT COMPUTING AND NEURAL	
NETWORKS: Evolution of Computing: Soft Computing Constituents, From	
Conventional AI to Computational Intelligence: Machine Learning Basics	
Unit 2	8
FUZZY LOGIC: Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations,	
Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference	
Systems, Fuzzy Expert Systems, Fuzzy Decision Making.	

Unit 3 NEUDAL NETWORKS, Mashing Lagring Using Neural Network	10
Adaptive Networks Feed forward Networks Supervised Learning Neural	
Networks, Radial Basis Function Networks : Reinforcement Learning.	
Unsupervised Learning Neural Networks, Adaptive Resonance architectures,	
Advances in Neural networks	
Unit 4	5
GENETIC ALGORITHMS: Introduction to Genetic Algorithms (GA),	
Applications of GA in Machine Learning : Machine Learning Approach to	
Knowledge Acquisition.	
Unit 5	13
Matlab/Python Lib: Introduction to Matlab/Python, Arrays and array	
operations, Functions and Files, Study of neural network toolbox and fuzzy	
logic toolbox, Simple implementation of Artificial Neural Network and Fuzzy	
Logic	
Unit 6	5
Recent Trands in deep learning, various classifiers, neural networks and	
genetic algorithm.	
Implementation of recently proposed soft computing techniques.	
COURSE OUTCOMES	
After completion of course, students would be able to:	
 Identify and describe soft computing techniques and their roles in building machines 	g intelligent
• Apply fuzzy logic and reasoning to handle uncertainty and solve various e problems.	engineering
• Apply genetic algorithms to combinatorial optimization problems.	
• Evaluate and compare solutions by various soft computing approaches for	a given problem.
References:	
 Jyh:Shing Roger Jang, Chuen:Tsai Sun, EijiMizutani, Neuro:Fuzzy and So Prentice:Hall of India, 2003. 	oft Computing,

- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic:Theory and Applications, Prentice Hall, 1995.
- 3. MATLAB Toolkit Manual

ELECTIVE III

Course Code	CSM203A	
Course Name	Advanced Wireless and Mobile Networks	
Credits	4	
Pre-Requisites	Computer Networks	
	To	tal Number of Lectures: 48

COURSE OBJECTIVE

• The students should get familiar with the wireless/mobile market and the future needs and challenges.

- To get familiar with key concepts of wireless networks, standards, technologies and their basic operations
- To learn how to design and analyse various medium access
- To learn how to evaluate MAC and network protocols using network simulation software tools.
- The students should get familiar with the wireless/mobile market and the future needs and challenges.

LECTURE WITH BREAKUP	NO. OF
TT 1/ 4	LECTURES
Unit 1:	
INTRODUCTION: Windows Networking Trends, Kern Windows Dhavied Leave Concepts, Multiple	
wireless Networking Trends, Key wireless Physical Layer Concepts, Multiple	
Access Technologies -CDMA, FDMA, TDMA, Spread Spectrum technologies,	
Frequency reuse, Radio Propagation and Modelling, Challenges in Mobile	11
Computing: Resource poorness, Bandwidth, energy etc.	11
WIRELESS LUCAL AREA NEI WORKS: IEEE 802 11 Wireless I ANS Deviced & MAC lover 802 11 MAC Modes (DCE	
LEEE 002.11 WHELESS LANS PHYSICAL & MAC LAYEL, 002.11 MAC Modes (DCF & DCF) IEEE 802.11 standards. Architecture & protocols. Infrastructure vs.	
Adhog Modes, Hidden Node & Exposed Terminal Problem, Problems, Feding	
Effects in Indoor and outdoor WI ANs. WI AN Deployment issues	
Unit 2.	
WIRELESS CELLULAR NETWORKS	
1G and 2G 2 5G 3G and 4G Mobile IPv4 Mobile IPv6 TCP over Wireless	
Networks Cellular architecture. Frequency reuse. Channel assignment	10
strategies Handoff strategies Interference and system canacity Improving	
coverage and capacity in cellular systems. Spread spectrum Technologies.	
WIMAX (Physical layer, Media access control, Mobility and Networking), IEEE	
802.22 Wireless Decional Area Networks, IEEE 802.21 Media Independent Handover	
Overview	8
WIDELESS SENSOD NETWORKS	
Introduction Application Physical MAC layer and Network Layer Dower	
Management Tiny OS Overview	
Unit A:	
WIRFI FSS PANs	4
Bluetooth AND Zigbee. Introduction to Wireless Sensors	
Unit 5:	
SECURITY	10
Security in wireless Networks Vulnerabilities, Security techniques, Wi-Fi	10
Security, DoS in wireless communication.	
Unit 6:	
ADVANCED TOPICS	5
IEEE 802.11x and IEEE 802.11i standards, Introduction to Vehicular Adhoc	3
Networks	

After completion of course, students would be:

• Demonstrate advanced knowledge of networking and wireless networking and understand various types of wireless networks, standards, operations and use cases.

- Be able to design WLAN, WPAN, WWAN, Cellular based upon underlying propagation and performance analysis.
- Demonstrate knowledge of protocols used in wireless networks and learn simulating wireless networks.
- Design wireless networks exploring trade-offs between wire line and wireless links.
- Develop mobile applications to solve some of the real world problems.

- 1. Schiller J., Mobile Communications, Addison Wesley 2000
- 2. Stallings W., Wireless Communications and Networks, Pearson Education 2005
- 3. Stojmenic Ivan, Handbook of Wireless Networks and Mobile Computing, John Wiley and Sons Inc 2002
- 4. Yi Bing Lin and Imrich Chlamtac, Wireless and Mobile Network Architectures, John Wiley and Sons Inc 2000
- 5. Pandya Raj, Mobile and Personal Communications Systems and Services, PHI 200

Course Code	CSM203B
Course Name	Data Science
Credits	4
Pre-Requisites	

Total Number of Lectures:48

COURSE OBJECTIVE

- Provide you with the knowledge and expertise to become a proficient data scientist.
- Demonstrate an understanding of statistics and machine learning concepts that are vital for data science;
- Produce Python code to statistically analyse a dataset;
- Critically evaluate data visualisations based on their design and use for communicating stories from data;

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	6
Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications.	
Unit 2:	7
Data collection and management: Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage and management, Using multiple data sources	
Unit 3:	10
Data analysis: Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear regression, SVM, Naive Bayes.	

Unit 4: Data visualisation:Introduction, Types of data visualisation,Data for visualisation:Data types, Data encodings, Retinal variables, Mapping variables to encodings, Visual encodings.	11
Unit 5:	7
Applications of Data Science, Technologies for visualisation, Bokeh (Python)	
Unit 6:	7
Recent trends in various data collection and analysis techniques, various visualization techniques, application development methods of used in data science.	

On completion of the course the student should be able to

- Explain how data is collected, managed and stored for data science;
- Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists;
- Implement data collection and management scripts using MongoDB

References:

- 1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.
- 2. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

Course Code	CSM203C
Course Name	Digital Forensics
Credits	4
Pre-Requisites	Cybercrime and Information Warfare, Computer Networks

Total Number of Lectures: 48

COURSE OBJECTIVE

• Provides an in-depth study of the rapidly changing and fascinating field of computer

forensics.

- Combines both the technical expertise and the knowledge required to investigate, detect and prevent digital crimes.
- Knowledge on digital forensics legislations, digital crime, forensics processes and procedures, data acquisition and validation, e-discovery tools
- E-evidence collection and preservation, investigating operating systems and file systems, network forensics, art of steganography and mobile device forensics

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	
Digital Forensics Science: Forensics science, computer forensics, and digital	
forensics.	9
Computer Crime: Criminalistics as it relates to the investigative process,	
analysis of cyber-criminalistics area, holistic approach to cyber-forensics	

Unit 2: Cyber Crime Scene Analysis: Discuss the various court orders etc., methods to search and seizure electronic evidence, retrieved and un-retrieved communications, Discuss the importance of understanding what court documents would be required for a criminal investigation.	8
Unit 3: Evidence Management & Presentation: Create and manage shared folders using operating system, importance of the forensic mindset, define the workload of law enforcement, Explain what the normal case would look like, Define who should be notified of a crime, parts of gathering evidence, Define and apply probable cause.	9
Unit 4: Computer Forensics: Prepare a case, Begin an investigation, Understand computer forensics workstations and software, Conduct an investigation, Complete a case, Critique a case, Network Forensics: open-source security tools for network forensic analysis, requirements for preservation of network data.	10
Unit 5: Mobile Forensics: mobile forensics techniques, mobile forensics tools. Legal Aspects of Digital Forensics: IT Act 2000, amendment of IT Act 2008.	8
Unit 6: Recent trends in mobile forensic technique and methods to search and seizure electronic evidence	4

C	COURSE OUTCOMES	
Af	After completion of course, students would be able to:	
٠	Understand relevant legislation and codes of ethics	
	Computer forensics and digital detective and various processes, policies and procedures	
	• E-discovery, guidelines and standards, E-evidence, tools and environment.	
	Email and web forensics and network forensics	

• Email and web forensics and network forensics

References:

1. John Sammons, The Basics of Digital Forensics, Elsevier

2. John Vacca, Computer Forensics: Computer Crime Scene Investigation, Laxmi Publications

Course Code	CSM203D
Course Name	Distributed Systems
Credits	4
Pre-Requisites	Database Management Systems

Total Number of Lectures: 48

COURSE OBJECTIVE

• To introduce the fundamental concepts and issues of managing large volume of shared data in a parallel and distributed environment, and to provide insight into related research problems.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1:	
INTRODUCTION	
Distributed data processing; What is a DDBS; Advantages and disadvantages of	
DDBS; Problem areas; Overview of database and computer network concepts	
DISTRIBUTED DATABASE MANAGEMENT SYSTEM	8
ARCHITECTURE	
Transparencies in a distributed DBMS; Distributed DBMS architecture; Global	
directory issues	
Unit 2:	
DISTRIBUTED DATABASE DESIGN	
Alternative design strategies; Distributed design issues; Fragmentation; Data	
allocation	
SEMANTICS DATA CONTROL	11
View management; Data security; Semantic Integrity Control	
QUERY PROCESSING ISSUES	
Objectives of query processing; Characterization of query processors; Layers of	
query processing; Query decomposition; Localization of distributed data	
Unit 3:	
DISTRIBUTED QUERY OPTIMIZATION	
Factors governing query optimization; Centralized query optimization; Ordering	
of fragment queries; Distributed query optimization algorithms	
TRANSACTION MANAGEMENT	11
The transaction concept; Goals of transaction management; Characteristics of	11
transactions; Taxonomy of transaction models	
CONCURRENCY CONTROL	
Concurrency control in centralized database systems; Concurrency control in	
DDBSs; Distributed concurrency control algorithms; Deadlock management	
Unit 4:	
RELIABILITY	8
Reliability issues in DDBSs; Types of failures; Reliability techniques; Commit	0
protocols; Recovery protocols	
Unit 5:	
PARALLEL DATABASE SYSTEMS	6
Parallel architectures; parallel query processing and optimization; load balancing	
Unit 6:	4
ADVANCED TOPICS	
Mobile Databases, Distributed Object Management, Multi-databases	

COURSE OUTCOMES
After completion of course, students would be:
• Design trends in distributed systems.
• Apply network virtualization.
• Apply remote method invocation and objects.

- 1. Principles of Distributed Database Systems, M.T. Ozsu and P. Valduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

ELECTIVE IV

Course Code	CSM204A
Course Name	Security in Computing
Credits	4
Pre-Requisites	Computer Networks, Web Programming

Total Number of Lectures:48

COURSE OBJECTIVE

- To learn the basics of security and various types of security issues.
- To study different cryptography techniques available and various security attacks.
- Explore network security and how they are implemented in real world.
- To get an insight of various issues of Web security and biometric authentication.

LECTURE WITH BREAKUP	NO. OF
	LECTURES
Unit 1:	6
Data security: Review of cryptography. Examples RSA, DES, ECC.	
Unit 2:	9
Authentication, non-repudiation and message integrity. Digital signatures and	
certificates. Protocols using cryptography (example Kerberos). Attacks on	
protocols	
Unit 3	9
Network security: Firewalls, Proxy-Servers, Network intrusion detection.	
Transport security: Mechanisms of TLS, SSL, IPSec.	
Unit 4	11
Web security – SQL injection, XSS, etc. Software security and buffer overflow.	
Malware types and case studies.	
Access Control, firewalls and host/network intrusion detection.	
Unit 5	8
Other topics: Biometric authentication, Secure E-Commerce (ex. SET), Smart	
Cards, Security in Wireless Communication.	
Unit 6: recent trends in IOT security, IDS and Biometric.	5

COURSE OUTCOMES

After completion of course, students would be able to:

- To have an understanding of basics of security and issues related to it.
- Understanding of biometric techniques available and how they are used in today's world.
- Security issues in web and how to tackle them.
- Learn mechanisms for transport and network security

- 1. W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security. Addison Wesley, 1994.
- 2. W. Stallings. Cryptography and Network Security. Prentice Hall, 1999.
- 3. B. Schneier. Applied Cryptography. Wiley, 1999.

Course Code	CSM204B
Course Name	Data Warehousing and Data Mining
Credits	4
Pre-Requisites	Databases, Probability

Total Number of Lectures: 48

COURSE OBJECTIVE

• The objective of this course is to introduce data warehousing and mining techniques. Application of data mining in web mining, pattern matching and cluster analysis is included to aware students of broad data mining areas.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1: Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods;	7
Unit 2: Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns,	8
Unit 3: Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis;	8
Unit 4: Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis;	11
Unit 5: Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.	9
Unit 6: Recent trends in Distributed Warehousing and Data Mining, Class Imbalance Problem; Graph Mining; Social Network Analysis	5

COURSE OUTCOMES

After completion of course, students would be:

- Study of different sequential pattern algorithms
- Study the technique to extract patterns from time series data and it application in real world.
- Can extend the Graph mining algorithms to Web mining
- Help in identifying the computing framework for Big Data

- 1. Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
- 2. Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 3. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Course Code	CSM204C
Course Name	Quantum Computing
Credits	4
Pre-Requisites	Linear Algebra, Theory of Computation

Total Number of Lectures: 48

COURSE OBJECTIVE

• The course will provide an insight of basic of quantum physics from a computer scientist's perspective, and how it describes reality and understand the philosophical implications of quantum computing

LECTURE WITH BREAKUP

NO. OF

	LECTURES
Unit 1: Qubit & Quantum States: The Qubit, Vector Spaces. Linear Combination Of Vectors, Uniqueness of a spanning set, basis & dimensions, inner Products, orthonormality, gram-schmidt orthogonalization, bra-ket formalism, the Cauchy-schwarez and triangle Inequalities.	8
Unit 2: Matrices & Operators: Observables, The Pauli Operators, Outer Products, The Closure Relation, Representation of operators using matrices, outer products & matrix representation, matrix representation of operators in two dimensional spaces, Pauli Matrix, Hermitian unitary and normal operator, Eigen values & Eigen Vectors, Spectral Decomposition, Trace of an operator, important properties of Trace, Expectation Value of Operator, Projection Operator, Positive Operators,	8
Unit 3: Commutator Algebra, Heisenberg uncertainty principle, polar decomposition &singular values, Postulates of Quantum Mechanics.	7
Unit 4: Tensor Products: Representing Composite States in Quantum Mechanics, Computing inner products, Tensor products of column vectors, operators and tensor products of Matrices. Density Operator: Density Operator of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density Operator & Bloch Vector.	12
Unit 5: Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8
Unit 6: Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	5

After completion of course, students would have:

• knowledge of Vector spaces, Matrices, Quantum state, Density operator and Quantum Measurement theory.

- 1. Quantum Computing without Magic by Zdzisław Meglicki
- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond Laflamme, Michele Mosca.

Course Code	CSM204D
Course Name	Computer Vision
Credits	4
Pre-Requisites	Linear algebra, vector calculus, Data structures and Programming.

Total Number of Lectures: 48

COURSE OBJECTIVE

• Have described the foundation of image formation, measurement, and analysis.

• Understand the geometric relationships between 2D images and the 3D world.

• Grasp the principles of state-of-the-art deep neural networks.

LECTURE WITH BREAKUP	NO. OF	
Unit 1:	LECTURES	
Overview, computer imaging systems, lenses, Image formation and sensing,	8	
Image analysis, pre-processing and Binary image analysis		
Unit 2:	0	
Edge detection, Edge detection performance, Hough transform, corner detection	9	
Unit 3:	9	
Segmentation, Morphological filtering, Fourier transform	7	
Unit 4:		
Feature extraction, shape, histogram, color, spectral, texture, using CVIPtools,	9	
Feature analysis, feature vectors, distance /similarity measures, data pre-		
Processing		
Unit 5:		
Pattern Analysis:		
Clustering: K-Means, K-Medoids, Mixture of Gaussians		
Classification: Discriminant Function, Supervised, Un-supervised, Semi-	9	
supervised		
Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA,		
ICA, and Non-parametric methods.		
Unit 6:	1	
Recent trends inActivity Recognition, computational photography, Biometrics.	4	

COURSE OUTCOMES

After completion of course, students would be able to:

• Developed the practical skills necessary to build computer vision applications.

• To have gained exposure to object and scene recognition and categorization from images.

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski.
- 2. Deep Learning, by Goodfellow, Bengio, and Courville.
- 3. Dictionary of Computer Vision and Image Processing, by Fisher et al.

OPEN ELECTIVE

Lecture: - 3 h/week

Course Code	CSM205A
Course Name	Business Analytics
Credits Prerequisites	
	Total Number of Lectures, 49

Total Number of Lectures: 48

Cour	se objective
1.	Understand the role of business analytics within an organization.
2.	Analyze data using statistical and data mining techniques and understand relationships
	between the underlying business processes of an organization.
3.	To gain an understanding of how managers use business analytics to formulate and solve
	business problems and to support managerial decision making.
4.	To become familiar with processes needed to develop, report, and analyze business data.
5.	Use decision-making tools/Operations research techniques.
6.	Mange business process using analytical and management tools.
7.	Analyze and solve problems from different industries such as manufacturing, service, retail,
	software, banking and finance, sports, pharmaceutical, aerospace etc.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit1:	
Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.	9

8
9
10
10
10
10
10
10
10
10
8
8
8
10 8 4

CO	URSE OUTCOMES
1.	Students will demonstrate knowledge of data analytics.
2.	Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
3.	Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
4.	Students will demonstrate the ability to translate data into clear, actionable insights.

- Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education.

OPEN ELECTIVES

Course Code	CSM205B
Course Name	Industrial Safety
Credits Prerequisites	

Total Number of Lectures: 48

Teaching scheme Lecture: - 3 h/week

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-III: Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and

applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-V: Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine

tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Reference:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

OPEN ELECTIVES

Course Code	CSM205C
Course Name	Optimization Techniques
Credits	4
Pre-Requisites	Linear Algebra and Numerical Methods

Total Number of Lectures: 48

COURSE OBJECTIVE

The objective of this course is to provide insight to the mathematical formulation of real world problems.

To optimize these mathematical problems using nature based algorithms. And the solution is useful specially for NP-Hard problems.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit 1: Engineering application of Optimization, Formulation of design problems as mathematical programming problems.	7
Unit 2: General Structure of Optimization Algorithms, Constraints, The Feasible Region.	7
Unit 3: Branches of Mathematical Programming: Optimization using calculus, Graphical Optimization, Linear Programming, Quadratic Programming, Integer Programming, Semi Definite Programming.	11
Unit 4: Optimization Algorithms like Genetic Optimization, Particle Swarm Optimization, Ant Colony Optimization etc.	12
Unit 5: Real life Problems and their mathematical formulation as standard programming problems.	6
Unit 6: Recent trends: Applications of ant colony optimization, genetics and linear and quadratic programming in real world applications.	5
COURSE OUTCOMES	

After completion of course, students would be:

- Formulate optimization problems.
- Understand and apply the concept of optimality criteria for various types of optimization problems.
- Solve various constrained and unconstrained problems in Single variable as well as multivariable.
- Apply the methods of optimization in real life situation.

References:

- 1. Laurence A. Wolsey (1998). Integer programming. Wiley. ISBN 978-0-471-28366-9.
- 2. Practical Optimization Algorithms and EngineeringApplications Andreas Antoniou.
- 3. An Introduction to Optimization Edwin K., P. Chong & Stanislaw h. Zak.
- 4. Dimitris Bertsimas; Robert Weismantel (2005). Optimization over integers. Dynamic Ideas. ISBN 978-0-9759146-2-5.
- 5. John K. Karlof (2006). Integer programming: theory and practice.CRC Press. ISBN 978-0-8493- 1914-3.
- 6. H. Paul Williams (2009). Logic and Integer Programming. Springer. ISBN 978-0-387-92279-9.
- Michael Jünger; Thomas M. Liebling; Denis Naddef; George Nemhauser; William R. Pulleyblank; Gerhard Reinelt; Giovanni Rinaldi; Laurence A. Wolsey, eds. (2009). 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the- Art. Springer. ISBN 978-3- 540-68274-5.
- 8. Der-San Chen; Robert G. Batson; Yu Dang (2010). Applied Integer Programming: Modeling and Solution. John Wiley and Sons. ISBN 978-0-470-37306-4.

Open Elective

Course Code	CSM205D	
Course Name	Cost Management of Engineering Projects	
Credits Prerequisites		

Total Number of Lectures: 48

Teaching scheme Lecture: - 3 h/week

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various

stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

References:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

CSM206	Audit Course I
CSM291	Advanced Algorithms Lab
CSM292	Soft Computing Lab
CSM281	Mini Project with Seminar

Course Code	CSM291
Course Name	Advanced Algorithms Lab
Credits	3
Pre-Requisites	

Total Number of Lab:12

COURSE OBJECTIVE

- Introduce students to the advanced methods of designing and analyzing algorithms.
- The student should be able to choose appropriate algorithms and use it for a specific problem.
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems.
 - Students should be able to understand different classes of problems concerning their computation difficulties.
 - To introduce the students to recent developments in the area of algorithmic design.

LABORATORY	NO. OF LABORATORY
Divide and Conquer: Find Maximum and Minimum element from a array of integer using Divide and Conquer approach	12
• Divide and Conquer: Implement Quick Sort using Divide and Conquer approach. Check the running time for different positions of pivot elements. Implement the randomized version of quick sort	
• Dynamic Programming: Find the minimum number of scalar multiplication needed for chain of Matrices	
• Implement Single Source shortest Path for a graph (Dijkstra and Bellman Ford Algorithm)	
• Dynamic Programming: Implement all pair Shortest path for a graph (Floyd- Warshall Algorithm)	
Greedy method: implement fractional Knapsack Problem, MST by Prim's algorithm	
• Greedy method: Implement MST by Kruskal's algorithm by using Union operation on Disjoint data Structures.	
• Graph Traversal Algorithm: Implement Depth First Search (DFS), application of DFS (do topological sorting, identify strongly connected components)	
 Implement KMP algorithm for string matching Implement Ford-Fulkerson algorithm to get maximum flow of a given flow network. 	

COURSE OUTCOMES

After completion of course, students would be able to:

- Analyze the complexity/performance of different algorithms.
- Determine the appropriate data structure for solving a particular set of problems.
- Categorize the different problems in various classes according to their complexity.
- Students should have an insight of recent activities in the field of the advanced data structure.

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.

Course Code	CSM292
Course Name	Soft Computing Lab
Credits	3
Pre-Requisites	

COURSE OBJECTIVE	
• To understand the mathematical fundamentals that is prerequisites for like Data mining, Network protocols, analysis of Web traffic, Compute engineering, Computer architecture, operating systems, distributed systems Machine learning.	or a variety of courses ter security, Software tems, Bioinformatics,
• To develop the understanding of the mathematical and logical basis to techniques in information technology like machine learning, programmin and concurrency.	many modern g language design,
To study various sampling and classification problems.	
LABORATORY	NO. OF LABORATORY
 Introduction to Matlab/Python, Arrays and array operations, Functions and Files. Familiarization with a few ML Tools such as Excel, WEKA, R, Python and TensorFlow Study of neural network toolbox and fuzzy logic toolbox. Simple implementation of Artificial Neural Network and Fuzzy Logic Implementation of latest soft computing techniques using one of the above tools. Regression (single and Multiple Variables) linear and non-liner; Logistic regression Classifiers: K-NN, Naïve Bayes Classifier, Perceptron, Multi Layer Perceptron Clustering Algorithms: K-Means , DB-Scan Applications of ANN and SVM using ML tools 	12
COURSE OUTCOMES	
After completion of course, students would be:	
An understanding of fundamental concepts and methods of machine learning and its applications.	
An ability to analyze and evaluate simple algorithms for pattern class	sification.
• An ability to design simple algorithms for pattern classification, code them with Python programming language and test them with benchmark data sets.	

• An understanding of fundamental concepts and methods of machine learning and its applications.

- 1. Jyh:Shing Roger Jang, Chuen:Tsai Sun, EijiMizutani, Neuro: Fuzzy and Soft Computing , Prentice: Hall of India, 2003.
- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,

Prentice Hall, 1995.

- 3. MATLAB Toolkit Manual ISBN 978-0-8493- 1914-3.
- 4. H. Paul Williams (2009). Logic and Integer Programming. Springer. ISBN 978-0-387-92279-9.
- Michael Jünger; Thomas M. Liebling; Denis Naddef; George Nemhauser; William R. Pulleyblank; Gerhard Reinelt; Giovanni Rinaldi; Laurence A. Wolsey, eds. (2009). 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the- Art. Springer. ISBN 978-3- 540-68274-5.
- 6. Der-San Chen; Robert G. Batson; Yu Dang (2010). Applied Integer Programming: Modeling and Solution. John Wiley and Sons. ISBN 978-0-470-37306-4.

Semester III

	Subject
CSM301	Audit Course II
CSM391	Project Part-I

Semester IV

	Subject
CSM491	Comprehensive Viva Voce
CSM492	Project Part-II

Audit course I & II

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by Yoga
- 8. Personality Development through Life Enlightenment Skills.